This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190218 #18 Feb 11 2019 01:25:06 %S A190218 1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,34,35, %T A190218 36,37,38,39,45,46,47,48,49,56,57,58,59,67,68,69,78,79,89,125,127,134, %U A190218 135,136,137,138,139,145,149,157,158,167,169,178,179,235 %N A190218 Numbers all of whose divisors are numbers whose decimal digits are in strictly increasing order. %C A190218 Sequence is finite. Last term a(163) = 23456789. %C A190218 Subset of A009993. Superset of A052015. %H A190218 Nathaniel Johnston and Jaroslav Krizek, <a href="/A190218/b190218.txt">Table of n, a(n) for n = 1..163</a> (complete list) %e A190218 Number 135 is in sequence because all divisors of 135 (1, 3, 5, 9, 15, 27, 45, 135) are numbers whose decimal digits are in strictly increasing order. %p A190218 with(numtheory): A190218 := proc(n) option remember: local d, dd, i, j, k, m, poten: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=divisors(k): poten:=1: for i from 1 to nops(d) do m:=10: dd:=convert(d[i], base, 10): for j from 1 to nops(dd) do if(m>dd[j])then m:=dd[j]: else poten:=0: break: fi: od: if(poten=0)then break:fi: od: if(poten=1)then return k: fi: od: end: seq(A190218(n), n=1..62); # _Nathaniel Johnston_, May 06 2011 %t A190218 Select[Range[250], And@@Positive[Flatten[Differences/@(IntegerDigits/@Divisors[#])]]&] (* _Harvey P. Dale_, Mar 24 2012 *) %K A190218 nonn,fini,full,base %O A190218 1,2 %A A190218 _Jaroslav Krizek_, May 06 2011