cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190259 Continued fraction of (x + sqrt(2 + 4x))/2, where x=sqrt(2).

This page as a plain text file.
%I A190259 #17 May 03 2024 19:53:30
%S A190259 2,11,32,1,4,10,2,1,1,3,1,1,5,2,3,2,1,4,2,3,2,41,1,2,1,1,3,4,1,35,1,5,
%T A190259 1,29661,2,1,1,2,1,1,1,1,1,2,5,2,2,2,1,1,1,5,15,2,1,1,1,2,7,1,1,1,13,
%U A190259 1,1,1,1,20,2,1,2,1,1,1,1,1,4,1,1,1,1,3,14,1
%N A190259 Continued fraction of (x + sqrt(2 + 4x))/2, where x=sqrt(2).
%H A190259 G. C. Greubel, <a href="/A190259/b190259.txt">Table of n, a(n) for n = 1..10000</a>
%t A190259 (See A190258.)
%t A190259 ContinuedFraction[(Sqrt[2]+Sqrt[2+4Sqrt[2]])/2,100] (* _Harvey P. Dale_, Jun 16 2016 *)
%o A190259 (PARI) contfrac((sqrt(2) + sqrt(2+4*sqrt(2)))/2) \\ _G. C. Greubel_, Dec 26 2017
%o A190259 (Magma) ContinuedFraction((Sqrt(2) + Sqrt(2+4*Sqrt(2)))/2); // _G. C. Greubel_, Dec 26 2017
%Y A190259 Cf. A188635, A190258.
%K A190259 nonn,cofr
%O A190259 1,1
%A A190259 _Clark Kimberling_, May 06 2011
%E A190259 Definition clarified by _Harvey P. Dale_, Jun 16 2016