This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190261 #16 Sep 08 2022 08:45:57 %S A190261 1,2,11,32,1,4,10,2,1,1,3,1,1,5,2,3,2,1,4,2,3,2,41,1,2,1,1,3,4,1,35,1, %T A190261 5,1,29661,2,1,1,2,1,1,1,1,1,2,5,2,2,2,1,1,1,5,15,2,1,1,1,2,7,1,1,1, %U A190261 13,1,1,1,1,20,2,1,2,1,1,1,1,1,4,1,1,1,1,3,14,1,8,2,1,1,1,1,2,1,3,2,3,1,8,2 %N A190261 Continued fraction of (1 + sqrt(1 + 2x))/2, where x=sqrt(2). %C A190261 1 followed by A190259. %H A190261 G. C. Greubel, <a href="/A190261/b190261.txt">Table of n, a(n) for n = 1..10000</a> %t A190261 r=2^(1/2); %t A190261 FromContinuedFraction[{1, r, {1, r}}] %t A190261 FullSimplify[%] %t A190261 ContinuedFraction[%, 100] (* A190261 *) %t A190261 RealDigits[N[%%, 120]] (* A190260 *) %t A190261 N[%%%, 40] %t A190261 ContinuedFraction[(1+Sqrt[1+2Sqrt[2]])/2,100] (* _Harvey P. Dale_, Jan 27 2013 *) %o A190261 (PARI) contfrac((1+sqrt(1+2*sqrt(2)))/2) \\ _G. C. Greubel_, Dec 26 2017 %o A190261 (Magma) ContinuedFraction((1+Sqrt(1+2*Sqrt(2)))/2) // _G. C. Greubel_, Dec 26 2017 %Y A190261 Cf. A190260, A190259. %K A190261 nonn,cofr %O A190261 1,2 %A A190261 _Clark Kimberling_, May 06 2011