cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190282 Continued fraction of (1+sqrt(1+r))/r, where r=sqrt(2).

This page as a plain text file.
%I A190282 #13 Sep 08 2022 08:45:57
%S A190282 1,1,4,6,1,2,2,2,1,1,6,1,179,46,1,1,3,2,1,1,3,6,3,1,1,1,1,2,1,1,56,1,
%T A190282 1,1,1,66,1,1,2,17,8,2,7,12,1,1,8,1,2,2,1,1,2,1,12,1,2,2,2,2,1,1,1,8,
%U A190282 1,1,1,1,2,1,2,5,1,6,8,1,1,1,2,7,1,9,1,2,5,7,1,6,1,10,1
%N A190282 Continued fraction of (1+sqrt(1+r))/r, where r=sqrt(2).
%C A190282 Equivalent to the periodic continued fraction [r,2,r,2,...] where r=sqrt(2).  For geometric interpretations of both continued fractions, see A190281 and A188635.
%C A190282 a(n) = A154748(n+1) for n > 0. - _Georg Fischer_, Oct 14 2018
%H A190282 G. C. Greubel, <a href="/A190282/b190282.txt">Table of n, a(n) for n = 1..5000</a>
%t A190282 ContinuedFraction[(1 + Sqrt[1 + Sqrt[2]])/Sqrt[2], 50] (* _G. C. Greubel_, Jan 31 2018 *)
%o A190282 (PARI) contfrac((1 + sqrt(1 + sqrt(2)))/sqrt(2)) \\ _G. C. Greubel_, Jan 31 2018
%o A190282 (Magma) ContinuedFraction((1 + Sqrt(1 + Sqrt(2)))/Sqrt(2)); // _G. C. Greubel_, Jan 31 2018
%Y A190282 Cf. A154748, A188635, A190282.
%K A190282 nonn,cofr
%O A190282 1,3
%A A190282 _Clark Kimberling_, May 07 2011