cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190283 Decimal expansion of 1+sqrt(1+sqrt(2)).

This page as a plain text file.
%I A190283 #15 Aug 18 2024 19:11:57
%S A190283 2,5,5,3,7,7,3,9,7,4,0,3,0,0,3,7,3,0,7,3,4,4,1,5,8,9,5,3,0,6,3,1,4,6,
%T A190283 9,4,8,1,6,4,5,8,3,4,9,9,4,1,0,3,0,7,8,3,6,3,3,2,6,7,1,1,4,8,3,3,3,6,
%U A190283 7,5,2,5,6,7,8,8,7,3,3,1,0,2,7,2,7,9,3,7,8,8,6,1,1,7,4,3,6,7,7,4,4,9,2,8,8,3,7,3,3,5,4,3,6,6,6,6,6,6,1,9
%N A190283 Decimal expansion of 1+sqrt(1+sqrt(2)).
%C A190283 The rectangle R whose shape (i.e., length/width) is 1+sqrt(1+sqrt(2)) can be partitioned into rectangles of shapes 2 and sqrt(2) in a manner that matches the periodic continued fraction [2, r, 2, r,  ...].  R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,1,1,4,6,1,2,2,2,1,1,6,...] at A190284.  For details, see A188635.
%C A190283 A quartic integer with minimal polynomial x^4 - 4x^3 + 4x^2 - 2. - _Charles R Greathouse IV_, Feb 09 2017
%H A190283 G. C. Greubel, <a href="/A190283/b190283.txt">Table of n, a(n) for n = 1..10000</a>
%H A190283 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>
%e A190283 2.553773974030037307344158953063146948165...
%t A190283 r=2^(1/2)
%t A190283 FromContinuedFraction[{2, r, {2, r}}]
%t A190283 FullSimplify[%]
%t A190283 ContinuedFraction[%, 100]  (* A190284 *)
%t A190283 RealDigits[N[%%, 120]]     (* A190283 *)
%t A190283 N[%%%, 40]
%t A190283 RealDigits[1+Sqrt[1+Sqrt[2]],10,120][[1]] (* _Harvey P. Dale_, Aug 18 2024 *)
%o A190283 (PARI) sqrt(sqrt(2)+1)+1 \\ _Charles R Greathouse IV_, Feb 09 2017
%o A190283 (PARI) polrootsreal(x^4 - 4*x^3 + 4*x^2 - 2)[2] \\ _Charles R Greathouse IV_, Feb 09 2017
%o A190283 (Magma) 1+Sqrt(1+Sqrt(2)); // _G. C. Greubel_, Apr 14 2018
%Y A190283 Cf. A188635, A190283, A190281, A190282.
%K A190283 nonn,cons
%O A190283 1,1
%A A190283 _Clark Kimberling_, May 07 2011