This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190300 #76 Apr 17 2019 11:48:36 %S A190300 4,6,9,25,49,169,289,361,529,841,961,1369,1681,1849,2209,2809,3481, %T A190300 3721,4489,5041,5329,6241,6889,7921,9409,10201,10609,11449,11881, %U A190300 12769,16129,17161,18769,19321,22201,22801,24649,26569,27889,29929,32041,32761,36481,37249,38809,39601,44521,49729 %N A190300 Composite numbers that are not Brazilian. %C A190300 Other than the term 6 and the missing term 121, is this sequence the same as A001248? - _Nathaniel Johnston_, May 24 2011 %C A190300 From _Bernard Schott_, Dec 04 2012: (Start) %C A190300 Yes, because %C A190300 1) 4 is not a Brazilian number [4 = 100_2]. %C A190300 2) 6 is not a Brazilian number [6 = 110_2 = 20_3 = 12_4]. %C A190300 3) Theorem 1, page 32 of Quadrature article mentioned in links: If n > 7 is not Brazilian, then n is a prime or the square of a prime. %C A190300 4) Theorem 5, page 37 of Quadrature article mentioned in links: The only square of prime number which is Brazilian is 121 = 11^2 = 11111_3. %C A190300 (End) %C A190300 There is an infinity of composite numbers that are not Brazilian: Corollary 2, page 37 of Quadrature article in links (consider the sequence of squares of prime numbers for p >= 13). - _Bernard Schott_, Dec 17 2012 %C A190300 Also semiprimes that are not Brazilian. - _Bernard Schott_, Apr 11 2019 %H A190300 Robert Israel, <a href="/A190300/b190300.txt">Table of n, a(n) for n = 1..10000</a> (first 208 terms from Robert G. Wilson v) %H A190300 Bernard Schott, <a href="/A125134/a125134.pdf">Les nombres brésiliens</a>, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature. %F A190300 a(1) = 2^2 = p_1^2, a(2) = 2*3 = p_1*p_2, a(3) = 3^2 = p_2^2, a(4) = 5^2 = p_3^2, a(5) = 7^2 = p_4^2, a(6) = 13^2 = p_6^2, ..., for n >= 6, a(n) = p_n^2, where p_k is the k-th prime number. - _Bernard Schott_, Dec 04 2012 %e A190300 a(10) = p_10^2 = 29^2 = 841. %p A190300 4, 6, 9, 25, 49,seq(ithprime(i)^2, i=6..100); # _Robert Israel_, Apr 17 2019 %t A190300 brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 10000], ! PrimeQ[#] && brazBases[#] == {} &] (* _T. D. Noe_, Dec 26 2012 *) %t A190300 f[n_] := Block[{b = 2}, While[ Length@ Union@ IntegerDigits[n, b] != 1, b++]; b]; k = 4; lst = {}; While[k < 50001, If[ !PrimeQ@ k && 1 + f@ k == k, AppendTo[lst, k]]; k++]; lst (* _Robert G. Wilson v_, Mar 30 2014 *) %o A190300 (PARI) isnotb(n) = my(c=0, d); for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), c=n; break); c++); (c==max(n-3, 0)); \\ A220570 %o A190300 lista(nn) = forcomposite(n=1, nn, if (isnotb(n), print1(n, ", "))); \\ _Michel Marcus_, Apr 14 2019 %Y A190300 Cf. A085104, A125134, A189891, A220571, A307507. %Y A190300 Intersection of A002808 and A220570. %Y A190300 Intersection of A001358 and A220570. %K A190300 nonn %O A190300 1,1 %A A190300 _N. J. A. Sloane_, May 14 2011 %E A190300 a(6)-a(24) from _Nathaniel Johnston_, May 24 2011 %E A190300 a(25) onward from _Robert G. Wilson v_, Mar 30 2014