cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190303 Decimal expansion of sum of alternating series of reciprocals of Ramanujan primes, Sum_{n>=1} (1/R_n)(-1)^(n-1), where R_n is the n-th Ramanujan prime, A104272(n).

This page as a plain text file.
%I A190303 #26 Feb 16 2025 08:33:14
%S A190303 4,4,6,6,8,4,3,0,7
%N A190303 Decimal expansion of sum of alternating series of reciprocals of Ramanujan primes, Sum_{n>=1} (1/R_n)(-1)^(n-1), where R_n is the n-th Ramanujan prime, A104272(n).
%C A190303 Computed 0.446684 for n = 1 to 65536, using Open Office Calc. Next digit expected to be between 2 and 3.
%C A190303 By computing all Ramanujan primes less than 10^9, we find that about 9 decimal places of the sum should be correct: 0.446684307 (truncated, not rounded). The following table shows the number of Ramanujan primes between powers of 10 and the sum of the alternating reciprocals of those primes.
%C A190303 1          1      0.50000000000000000
%C A190303 2          9     -0.05765566386047510
%C A190303 3         62      0.00388002010130731
%C A190303 4        487      0.00050881775862179
%C A190303 5       3900     -0.00004384563815649
%C A190303 6      32501     -0.00000552572415587
%C A190303 7     279106      0.00000045427780897
%C A190303 8    2444255      0.00000005495474474
%C A190303 9   21731345     -0.00000000549864067
%C A190303 Total:            0.44668430669928564 - _T. D. Noe_, May 08 2011
%C A190303 Let E_n denote the error after the first n terms in the series. Then by the Alternating Series Test, 1/R_{n+1} - 1/R_{n+2} < E_n < 1/R_{n+1}. [_Jonathan Sondow_, May 10 2011]
%H A190303 J. Sondow, <a href="http://arxiv.org/abs/0907.5232">Ramanujan primes and Bertrand's postulate</a>, arXiv:0907.5232 [math.NT], 2009-2010.
%H A190303 J. Sondow, <a href="http://www.jstor.org/stable/40391170">Ramanujan primes and Bertrand's postulate</a>, Amer. Math. Monthly 116 (2009), 630-635.
%H A190303 J. Sondow, J. W. Nicholson, and T. D. Noe, <a href="http://arxiv.org/abs/1105.2249"> Ramanujan Primes: Bounds, Runs, Twins, and Gaps</a>, J. Integer Seq. 14 (2011) Article 11.6.2
%H A190303 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a>
%F A190303 Sum_{n>=1} (-1)^(n-1)(1/R_n), where R_n is the n-th Ramanujan prime, A104272(n).
%e A190303 0.446684307...
%Y A190303 Cf. A104272, A085548, A078437, A190124.
%K A190303 nonn,cons,more
%O A190303 0,1
%A A190303 _John W. Nicholson_, May 07 2011
%E A190303 Definition corrected by _Jonathan Sondow_, May 10 2011