This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190303 #26 Feb 16 2025 08:33:14 %S A190303 4,4,6,6,8,4,3,0,7 %N A190303 Decimal expansion of sum of alternating series of reciprocals of Ramanujan primes, Sum_{n>=1} (1/R_n)(-1)^(n-1), where R_n is the n-th Ramanujan prime, A104272(n). %C A190303 Computed 0.446684 for n = 1 to 65536, using Open Office Calc. Next digit expected to be between 2 and 3. %C A190303 By computing all Ramanujan primes less than 10^9, we find that about 9 decimal places of the sum should be correct: 0.446684307 (truncated, not rounded). The following table shows the number of Ramanujan primes between powers of 10 and the sum of the alternating reciprocals of those primes. %C A190303 1 1 0.50000000000000000 %C A190303 2 9 -0.05765566386047510 %C A190303 3 62 0.00388002010130731 %C A190303 4 487 0.00050881775862179 %C A190303 5 3900 -0.00004384563815649 %C A190303 6 32501 -0.00000552572415587 %C A190303 7 279106 0.00000045427780897 %C A190303 8 2444255 0.00000005495474474 %C A190303 9 21731345 -0.00000000549864067 %C A190303 Total: 0.44668430669928564 - _T. D. Noe_, May 08 2011 %C A190303 Let E_n denote the error after the first n terms in the series. Then by the Alternating Series Test, 1/R_{n+1} - 1/R_{n+2} < E_n < 1/R_{n+1}. [_Jonathan Sondow_, May 10 2011] %H A190303 J. Sondow, <a href="http://arxiv.org/abs/0907.5232">Ramanujan primes and Bertrand's postulate</a>, arXiv:0907.5232 [math.NT], 2009-2010. %H A190303 J. Sondow, <a href="http://www.jstor.org/stable/40391170">Ramanujan primes and Bertrand's postulate</a>, Amer. Math. Monthly 116 (2009), 630-635. %H A190303 J. Sondow, J. W. Nicholson, and T. D. Noe, <a href="http://arxiv.org/abs/1105.2249"> Ramanujan Primes: Bounds, Runs, Twins, and Gaps</a>, J. Integer Seq. 14 (2011) Article 11.6.2 %H A190303 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a> %F A190303 Sum_{n>=1} (-1)^(n-1)(1/R_n), where R_n is the n-th Ramanujan prime, A104272(n). %e A190303 0.446684307... %Y A190303 Cf. A104272, A085548, A078437, A190124. %K A190303 nonn,cons,more %O A190303 0,1 %A A190303 _John W. Nicholson_, May 07 2011 %E A190303 Definition corrected by _Jonathan Sondow_, May 10 2011