This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190312 #28 Feb 16 2025 08:33:14 %S A190312 0,0,40,368,1704,5704,15400,36096,75632,145968,263592,451392,738360, %T A190312 1163552,1774840,2632344,3808992,5394752,7493936,10233832,13759008, %U A190312 18241312,23877984,30896984,39551456,50137240,62983128,78459880 %N A190312 Number of scalene triangles on an n X n grid (or geoboard). %H A190312 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Geoboard.html">Geoboard</a>. %H A190312 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ScaleneTriangle.html">Scalene Triangle</a>. %F A190312 a(n) = A045996(n) - A186434(n). %t A190312 q[n_] := %t A190312 Module[{sqDist, t0, t1, t2}, %t A190312 (* Squared distances *) %t A190312 sqDist = {p_, q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2; %t A190312 (* Triads of points *) %t A190312 t0 = Subsets[Range[0, n^2 - 1], {3, 3}]; %t A190312 (* Exclude collinear vertices *) %t A190312 t1 = Select[t0, Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[ %t A190312 3]]}]] != 0 &]; %t A190312 (* Calculate sides *) %t A190312 t2 = Map[{#, %t A190312 Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /. sqDist]}&, t1]; %t A190312 (* Select scalenes *) %t A190312 t2 = Select[t2, %t A190312 #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2,3]] != #[[2, 1]] &]; %t A190312 Return[Length[t2]]; %t A190312 ]; %t A190312 Map[q[#] &, Range[9]] (* _César Eliud Lozada_, Mar 26 2021 *) %Y A190312 Cf. A045996, A186434. %K A190312 nonn %O A190312 1,3 %A A190312 _Martin Renner_, May 08 2011