This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190313 #24 Feb 16 2025 08:33:14 %S A190313 0,0,3,18,57,137,280,517,863,1368,2069,3007,4218,5774,7704,10109, %T A190313 13025,16523,20671,25567,31274,37891,45529,54213,64082,75320,87901, %U A190313 102014,117736,135217,154606,176024,199502,225290,253485,284305,317811,354282,393618,436202,482332 %N A190313 Number of scalene triangles, distinct up to congruence, on an n X n grid (or geoboard). %H A190313 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Geoboard.html">Geoboard</a>. %H A190313 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ScaleneTriangle.html">Scalene Triangle</a>. %F A190313 a(n) = A028419(n) - A189978(n). %t A190313 q[n_] := %t A190313 Module[{sqDist, t0, t1, t2, t3}, %t A190313 (*Squared distances*) %t A190313 sqDist = {p_,q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2; %t A190313 (*Triads of points*) %t A190313 t0 = Subsets[Range[0, n^2 - 1], {3, 3}]; %t A190313 (* Exclude collinear vertices *) %t A190313 t1 = Select[t0, %t A190313 Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[ %t A190313 3]]}]] != 0 &]; %t A190313 (*Calculate sides*) %t A190313 t2 = Map[{#, %t A190313 Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /. %t A190313 sqDist]} &, t1]; %t A190313 (*Exclude not-scalenes*) %t A190313 t2 = Select[ %t A190313 t2, #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2, %t A190313 3]] != #[[2, 1]] &]; %t A190313 (* Find groups of congruent triangles *) %t A190313 t3 = GatherBy[Range[Length[t2]], t2[[#, 2]] &]; %t A190313 Return[Length[t3]]; %t A190313 ]; %t A190313 Map[q[#] &, Range[10]] (* _César Eliud Lozada_, Mar 26 2021 *) %Y A190313 Cf. A028419, A189978. %K A190313 nonn %O A190313 1,3 %A A190313 _Martin Renner_, May 08 2011