cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A279418 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute isosceles triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 0, 2, 8, 0, 0, 2, 2, 16, 0, 0, 2, 4, 6, 16, 0, 0, 2, 0, 4, 2, 24, 0, 0, 2, 0, 2, 4, 6, 24, 0, 0, 2, 0, 6, 6, 4, 6, 40, 0, 0, 2, 0, 2, 0, 6, 4, 6, 40, 0, 0, 2, 0, 2, 0, 8, 2, 8, 2, 40, 0, 0, 2, 0, 2, 4, 2, 8, 2, 4, 10, 40, 0, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,0
0,0,8
0,0,2,8
0,0,2,2,16
0,0,2,4,6,16
0,0,2,0,4,2,24
0,0,2,0,2,4,6,24
0,0,2,0,6,6,4,6,40
0,0,2,0,2,0,6,4,6,40
0,0,2,0,2,0,8,2,8,2,40
0,0,2,0,2,4,2,8,2,4,10,40
0,0,2,0,2,0,2,2,8,10,8,10,48
0,0,2,0,2,4,2,4,10,0,2,8,14,48
0,0,2,0,2,0,6,0,4,6,12,6,8,6,56
0,0,2,0,2,0,2,0,2,8,2,0,6,8,10,56
------
The vertex between the two equal sides is 'o'.
For n=3, k=3:
x.x   x..   o..   .x.   .x.   .o.   ..o   ..x
...   ..o   ..x   x..   ..x   ...   x..   o..
.o.   x..   .x.   ..o   o..   x.x   .x.   ..x
So T(3,3)=8
------
For n=6, k=4:
x....o   o....x   .x....   ....x.
......   ......   ......   ......
......   ......   ......   ......
.x....   ....x.   x....o   o....x
So T(6,4)=4
		

Crossrefs

Cf. A190317.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A190318 Number of obtuse isosceles triangles on an n X n grid.

Original entry on oeis.org

0, 0, 0, 4, 36, 100, 256, 496, 968, 1672, 2736, 4092, 6188, 8764, 12144, 16464, 22224, 28928, 37400, 47076, 59244, 73580, 90344, 109000, 132048, 158000, 187528, 220716, 259348, 301388, 350088, 402792, 463176, 529720, 602888, 683092, 774476, 872100, 978232
Offset: 1

Views

Author

Martin Renner, May 08 2011

Keywords

Comments

Place all bounding boxes of A280639 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = Sum(i=1..n, Sum(j=1..i, k * (n-i+1) * (n-j+1) * A280639(i,j))) where k=1 when i=j and k=2 otherwise. - Lars Blomberg, Mar 02 2017

Crossrefs

Formula

a(n) = A186434(n) - A190317(n) - A187452(n).

Extensions

a(10)-a(39) from Nathaniel Johnston, May 09 2011

A241229 Number of acute isosceles triangles on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 8, 144, 768, 2558, 6564, 14334, 27626, 48828, 80772, 126692, 190230, 275700, 388016, 532386, 714906, 941600, 1219410, 1556184, 1959608, 2438868, 3002700
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Crossrefs

Cf. A190317.

Formula

a(n) = A241228(n) - A241230(n).

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(22) from Giovanni Resta, May 31 2014
Showing 1-3 of 3 results.