cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190339 The denominators of the subdiagonal in the difference table of the Bernoulli numbers.

This page as a plain text file.
%I A190339 #71 Aug 25 2025 11:28:25
%S A190339 2,6,15,105,105,231,15015,2145,36465,969969,4849845,10140585,10140585,
%T A190339 22287,3231615,7713865005,7713865005,90751353,218257003965,1641030105,
%U A190339 67282234305,368217318651,1841086593255
%N A190339 The denominators of the subdiagonal in the difference table of the Bernoulli numbers.
%C A190339 Apparently a(n) = A181131(n) for n>=2 (checked numerically up to n=640). - _R. J. Mathar_, Aug 25 2025
%C A190339 The denominators of the T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. For the numerators of the T(n, n+1) see A191972.
%C A190339 The T(n, m) are defined by A164555(n)/A027642(n) and its successive differences, see the formulas.
%C A190339 Reading the array T(n, m), see the examples, by its antidiagonals leads to A085737(n)/A085738(n).
%C A190339 A164555(n)/A027642(n) is an autosequence (eigensequence whose inverse binomial transform is the sequence signed) of the second kind; the main diagonal T(n, n) is twice the first upper diagonal T(n, n+1).
%C A190339 We can get the Bernoulli numbers from the T(n, n+1) in an original way, see A192456/A191302.
%C A190339 Also the denominators of T(n, n+1) of the table defined by A085737(n)/A085738(n), the upper diagonal, called the median Bernoulli numbers by Chen. As such, Chen proved that a(n) is even only for n=0 and n=1 and that a(n) are squarefree numbers. (see Chen link). - _Michel Marcus_, Feb 01 2013
%C A190339 The sum of the antidiagonals of T(n,m) is 1 in the first antidiagonal, otherwise 0. _Paul Curtz_, Feb 03 2015
%D A190339 Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
%H A190339 G. C. Greubel, <a href="/A190339/b190339.txt">Table of n, a(n) for n = 0..450</a>
%H A190339 Kwang-Wu Chen, <a href="http://dx.doi.org/10.1016/j.jnt.2004.08.011">A summation on Bernoulli numbers</a>, Journal of Number Theory, Volume 111, Issue 2, April 2005, Pages 372-391.
%H A190339 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers">Computation and asymptotics of the Bernoulli numbers</a>
%F A190339 T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.
%F A190339 T(1, m) = A051716(m+1)/A051717(m+1);
%F A190339 T(n, n) = 2*T(n, n+1).
%F A190339 T(n+1, n+1) = (-1)^(1+n)*A181130(n+1)/A181131(n+1). - _R. J. Mathar_, Jun 18 2011
%F A190339 a(n) = A141044(n)*A181131(n). - _Paul Curtz_, Apr 21 2013
%e A190339 The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are:
%e A190339 1,       1/2,     1/6,      0,     -1/30,         0,        1/42,
%e A190339 -1/2,   -1/3,    -1/6,  -1/30,      1/30,      1/42,       -1/42,
%e A190339 1/6,     1/6,    2/15,   1/15,    -1/105,     -1/21,      -1/105,
%e A190339 0,     -1/30,   -1/15, -8/105,    -4/105,     4/105,       8/105,
%e A190339 -1/30, -1/30,  -1/105,  4/105,     8/105,     4/105,   -116/1155,
%e A190339 0,      1/42,    1/21,  4/105,    -4/105,   -32/231,     -16/231,
%e A190339 1/42,   1/42,  -1/105, -8/105, -116/1155,    16/231,  6112/15015,
%p A190339 T := proc(n,m)
%p A190339     option remember;
%p A190339     if n < 0 or m < 0 then
%p A190339         0 ;
%p A190339     elif n = 0 then
%p A190339         if m = 1 then
%p A190339             -bernoulli(m) ;
%p A190339         else
%p A190339             bernoulli(m) ;
%p A190339         end if;
%p A190339     else
%p A190339         procname(n-1,m+1)-procname(n-1,m) ;
%p A190339     end if;
%p A190339 end proc:
%p A190339 A190339 := proc(n)
%p A190339     denom( T(n+1,n)) ;
%p A190339 end proc: # _R. J. Mathar_, Apr 25 2013
%t A190339 nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* _Jean-François Alcover_, Aug 08 2012 *)
%o A190339 (Sage)
%o A190339 def A190339_list(n) :
%o A190339     T = matrix(QQ, 2*n+1)
%o A190339     for m in (0..2*n) :
%o A190339         T[0,m] = bernoulli_polynomial(1,m)
%o A190339         for k in range(m-1,-1,-1) :
%o A190339             T[m-k,k] = T[m-k-1,k+1] - T[m-k-1,k]
%o A190339     for m in (0..n-1) : print([T[m,k] for k in (0..n-1)])
%o A190339     return [denominator(T[k,k+1]) for k in (0..n-1)]
%o A190339 A190339_list(7) # Also prints the table as displayed in EXAMPLE. _Peter Luschny_, Jun 21 2012
%K A190339 nonn,frac,changed
%O A190339 0,1
%A A190339 _Paul Curtz_, May 09 2011
%E A190339 Edited and Maple program added by _Johannes W. Meijer_, Jun 29 2011, Jun 30 2011
%E A190339 New name from _Peter Luschny_, Jun 21 2012