This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190339 #71 Aug 25 2025 11:28:25 %S A190339 2,6,15,105,105,231,15015,2145,36465,969969,4849845,10140585,10140585, %T A190339 22287,3231615,7713865005,7713865005,90751353,218257003965,1641030105, %U A190339 67282234305,368217318651,1841086593255 %N A190339 The denominators of the subdiagonal in the difference table of the Bernoulli numbers. %C A190339 Apparently a(n) = A181131(n) for n>=2 (checked numerically up to n=640). - _R. J. Mathar_, Aug 25 2025 %C A190339 The denominators of the T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. For the numerators of the T(n, n+1) see A191972. %C A190339 The T(n, m) are defined by A164555(n)/A027642(n) and its successive differences, see the formulas. %C A190339 Reading the array T(n, m), see the examples, by its antidiagonals leads to A085737(n)/A085738(n). %C A190339 A164555(n)/A027642(n) is an autosequence (eigensequence whose inverse binomial transform is the sequence signed) of the second kind; the main diagonal T(n, n) is twice the first upper diagonal T(n, n+1). %C A190339 We can get the Bernoulli numbers from the T(n, n+1) in an original way, see A192456/A191302. %C A190339 Also the denominators of T(n, n+1) of the table defined by A085737(n)/A085738(n), the upper diagonal, called the median Bernoulli numbers by Chen. As such, Chen proved that a(n) is even only for n=0 and n=1 and that a(n) are squarefree numbers. (see Chen link). - _Michel Marcus_, Feb 01 2013 %C A190339 The sum of the antidiagonals of T(n,m) is 1 in the first antidiagonal, otherwise 0. _Paul Curtz_, Feb 03 2015 %D A190339 Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. %H A190339 G. C. Greubel, <a href="/A190339/b190339.txt">Table of n, a(n) for n = 0..450</a> %H A190339 Kwang-Wu Chen, <a href="http://dx.doi.org/10.1016/j.jnt.2004.08.011">A summation on Bernoulli numbers</a>, Journal of Number Theory, Volume 111, Issue 2, April 2005, Pages 372-391. %H A190339 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers">Computation and asymptotics of the Bernoulli numbers</a> %F A190339 T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. %F A190339 T(1, m) = A051716(m+1)/A051717(m+1); %F A190339 T(n, n) = 2*T(n, n+1). %F A190339 T(n+1, n+1) = (-1)^(1+n)*A181130(n+1)/A181131(n+1). - _R. J. Mathar_, Jun 18 2011 %F A190339 a(n) = A141044(n)*A181131(n). - _Paul Curtz_, Apr 21 2013 %e A190339 The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are: %e A190339 1, 1/2, 1/6, 0, -1/30, 0, 1/42, %e A190339 -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, %e A190339 1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, %e A190339 0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, %e A190339 -1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, %e A190339 0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231, %e A190339 1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, %p A190339 T := proc(n,m) %p A190339 option remember; %p A190339 if n < 0 or m < 0 then %p A190339 0 ; %p A190339 elif n = 0 then %p A190339 if m = 1 then %p A190339 -bernoulli(m) ; %p A190339 else %p A190339 bernoulli(m) ; %p A190339 end if; %p A190339 else %p A190339 procname(n-1,m+1)-procname(n-1,m) ; %p A190339 end if; %p A190339 end proc: %p A190339 A190339 := proc(n) %p A190339 denom( T(n+1,n)) ; %p A190339 end proc: # _R. J. Mathar_, Apr 25 2013 %t A190339 nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* _Jean-François Alcover_, Aug 08 2012 *) %o A190339 (Sage) %o A190339 def A190339_list(n) : %o A190339 T = matrix(QQ, 2*n+1) %o A190339 for m in (0..2*n) : %o A190339 T[0,m] = bernoulli_polynomial(1,m) %o A190339 for k in range(m-1,-1,-1) : %o A190339 T[m-k,k] = T[m-k-1,k+1] - T[m-k-1,k] %o A190339 for m in (0..n-1) : print([T[m,k] for k in (0..n-1)]) %o A190339 return [denominator(T[k,k+1]) for k in (0..n-1)] %o A190339 A190339_list(7) # Also prints the table as displayed in EXAMPLE. _Peter Luschny_, Jun 21 2012 %K A190339 nonn,frac,changed %O A190339 0,1 %A A190339 _Paul Curtz_, May 09 2011 %E A190339 Edited and Maple program added by _Johannes W. Meijer_, Jun 29 2011, Jun 30 2011 %E A190339 New name from _Peter Luschny_, Jun 21 2012