cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190356 Least positive x in the Diophantine equation x^3 + y^3 = n*z^3 (with x >= y and y != 0).

Original entry on oeis.org

1, 37, 2, 2, 89, 7, 683, 18, 3, 19, 25469, 3, 3, 163, 137, 1853, 631, 3, 4, 449, 7, 11, 23417, 730511, 1872, 28747, 5, 11, 4, 4, 5353, 2538163, 15409, 53, 197, 17351, 5563, 13, 433, 2570129, 13, 1176498611, 53, 1241, 4, 25903, 15642626656646177, 14, 5, 592, 4033, 165889, 90, 181, 9109, 5266097, 5, 184223499139, 5, 5, 7, 52954777
Offset: 1

Views

Author

Jean-François Alcover, May 11 2011

Keywords

Comments

This sequence a(k) is computed so that equation a(k)^3 + y^3 = A020898(k)*z^3 holds.
The 4 sequences A020898 [i.e., n], A190356 [i.e., x], A190580 [i.e., y] and A190581 [i.e., z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3.
All x values above 25469 were obtained from Mishima's list and may not be the least positive solution.

Examples

			a(18) = 3 because A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

  • Mathematica
    (* Let x = u + v and y = u - v *)
    f[n_, m_] := (r =  Reduce[u > 0 && v > 0 && Mod[2*u^3 + 6*u*v^2, n] == 0, {u, v},  Integers] ;
    uv={u,v}/.(ToRules/@ List@@ r[[All,-2;;-1]])/.C-> c;
    xy = (s = {};
    Do[sel =  Select[uv,  IntegerQ[((2*#1[[1]]^3 + 6*#1[[1]]*#1[[2]]^2)/n)^(1/ 3)] &];
    If[sel =!= {}, AppendTo[s, sel] ], {c[1], 0, m}, {c[2], 0,  m}];
    {#[[1]] + #[[2]], #[[1]] - #[[2]]} & /@ (s //
    Flatten[#, 1] &)) // Select[#, Total[#] != 0 &] &;
    nxyz =  xy /. {x_Integer, y_} -> {n, x, y, ((x^3 + y^3)/n)^(1/3)};
    nxyz /. ({, x, y_, z_} /; {x, y, z} != {0, 0, 0} &&
    GCD[x, y, z] != 1) :> (gd = GCD[x, y, z]; {n, x/gd, y/gd, z/gd})) // Union // Sort[#, #1[[2]] < #2[[2]] &] &;
    g[n_] := (m0 = 1; While[(r = f[n, m0]) == {}, m0 = 2 m0];
    r // First);
    A020898 = {2, 6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 49, 50, 51, 53, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 97, 98, 103, 105, 106, 107, 110, 114, 115, 117, 123, 124, 126, 127, 130}; km = Length[A020898]; (* xm(n) = some hard to compute values of x from Hisanori Mishima's list *) xm[22]=25469; xm[50]=23417; xm[51]=730511; xm[58]=28747; xm[68]=2538163; xm[69]=15409; xm[75]=17351; xm[85]=2570129; xm[87]=1176498611; xm[92]=25903; xm[94]=15642626656646177; xm[106]=165889; xm[114]=9109; xm[115]=5266097; xm[123]=184223499139; xm[130]=52954777; xm[n_] := xm[n] = g[n][[2]];
    A190356 = Table[ n = A020898[[k]]; Print[xm[n]]; xm[n], {k, 1, km}] (* Jean-François Alcover, Jan 03 2012 *)

Extensions

Positions corresponding to n=124 and n=127 (which were not minimal) corrected by Jean-François Alcover
Extended to 62 terms by Jean-François Alcover, Jan 03 2012