This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190384 #9 Aug 25 2016 23:01:36 %S A190384 55440,65520,85680,92400,95760,102960,109200,115920,124740,129360, %T A190384 134640,142800,144144,146160,147420,150480,152880,156240,159120, %U A190384 159600,171600,177840,182160,186480,188496,192780,193200,199920,203280,206640 %N A190384 Numbers with prime factorization pqrs^2t^4. %H A190384 T. D. Noe, <a href="/A190384/b190384.txt">Table of n, a(n) for n = 1..1000</a> %H A190384 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %t A190384 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,2,4};Select[Range[300000],f] %o A190384 (PARI) list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p1=2,sqrtnint(lim\420, 4), t1=p1^4; forprime(p2=2,sqrtint(lim\(30*t1)), if(p2==p1, next); t2=p2^2*t1; forprime(p3=2,lim\(6*t2), if(p3==p1 || p3==p2, next); t3=p3*t2; forprime(p4=2,lim\(2*t3), if(p4==p1 || p4==p2 || p4==p3, next); t4=p4*t3; forprime(p5=2,lim\t4, if(p5==p1 || p5==p2 || p5==p3 || p5==p4, next); listput(v, t4*p5)))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016 %Y A190384 Cf. A190382, A190383. %K A190384 nonn %O A190384 1,1 %A A190384 _Vladimir Joseph Stephan Orlovsky_, May 09 2011