This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190385 #10 Aug 25 2016 23:07:32 %S A190385 83160,98280,128520,143640,154440,173880,201960,216216,219240,225720, %T A190385 231000,234360,238680,266760,273000,273240,279720,282744,309960, %U A190385 316008,322920,325080,334152,344520,348840,355320,357000,368280,373464,382536 %N A190385 Numbers with prime factorization pqrs^3t^3. %H A190385 T. D. Noe, <a href="/A190385/b190385.txt">Table of n, a(n) for n = 1..1000</a> %H A190385 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %t A190385 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,3,3};Select[Range[600000],f] %o A190385 (PARI) list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtnint(lim\840, 3), t1=p^3; forprime(q=2,sqrtnint(lim\(30*t1), 3), if(q==p, next); t2=q^3*t1; forprime(r=2,lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016 %Y A190385 Cf. A190382, A190383, A190384. %K A190385 nonn %O A190385 1,1 %A A190385 _Vladimir Joseph Stephan Orlovsky_, May 09 2011