This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190390 #9 Aug 25 2016 23:01:38 %S A190390 360360,471240,526680,540540,556920,600600,622440,637560,706860, %T A190390 753480,785400,790020,803880,813960,835380,840840,859320,875160, %U A190390 877800,928200,933660,950040,956340,978120,985320,1015560,1025640,1037400,1062600 %N A190390 Numbers with prime factorization pqrst^2u^3. %H A190390 T. D. Noe, <a href="/A190390/b190390.txt">Table of n, a(n) for n = 1..1000</a> %H A190390 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %t A190390 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,2,3};Select[Range[1500000],f] %o A190390 (PARI) list(lim)=my(v=List(),t1,t2,t3,t4,t5); forprime(p=2,sqrtnint(lim\4620, 3), t1=p^3; forprime(q=2,sqrtint(lim\(210*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(30*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\(6*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\(2*t4), if(t==p || t==q || t==r || t==s, next); t5=t*t4; forprime(u=2,lim\t5, if(u==p || u==q || u==r || u==s || u==t, next); listput(v, t5*u))))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016 %Y A190390 Cf. A190387, A190388. %K A190390 nonn %O A190390 1,1 %A A190390 _Vladimir Joseph Stephan Orlovsky_, May 09 2011