This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190394 #47 Apr 02 2024 03:46:50 %S A190394 1,4,5,8,10,16,17,20,21,24,26,32,33,36,39,42,45,48,51,54,58,64,65,66, %T A190394 68,72,75,80,81,84,87,90,93 %N A190394 Maximum number of nonattacking nightriders on an n X n board. %C A190394 A nightrider is a fairy chess piece that can move any distance in a direction specified by a knight move. %C A190394 Maximum number of nonattacking nightriders on an n X n toroidal board is n. %H A190394 Andy Huchala, <a href="/A190394/a190394.py.txt">Python program</a>. %H A190394 Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, pp. 751-763. %H A190394 Rob Pratt, <a href="/A190394/a190394.pdf">54 nonattacking nightriders on a 20 X 20 board</a>. %F A190394 2n <= a(n) <= 3n-2, for n > 3. %F A190394 a(n) >= 24*floor((n+4)/10)-8, for n >= 6. - _Vaclav Kotesovec_, Apr 01 2012 %e A190394 From _Rob Pratt_, Jul 24 2015: (Start) %e A190394 a(20) = 54: %e A190394 XX--XXXX---X------XX %e A190394 XX---------X--XX--XX %e A190394 -------------------- %e A190394 ---X---------------- %e A190394 X-----------------X- %e A190394 X-----------------X- %e A190394 X------------------- %e A190394 X---------X--------- %e A190394 ------------------XX %e A190394 ------------X------- %e A190394 -------X------------ %e A190394 XX------------------ %e A190394 ---------X---------X %e A190394 -------------------X %e A190394 -X-----------------X %e A190394 -X-----------------X %e A190394 ----------------X--- %e A190394 -------------------- %e A190394 XX--XX--X---------XX %e A190394 XX------X---XXXX--XX %e A190394 (End) %Y A190394 Cf. A085801, A190393, A172141, A173429. %K A190394 nonn,nice,hard,more %O A190394 1,2 %A A190394 _Vaclav Kotesovec_, May 10 2011 %E A190394 Terms a(11)-a(16) from _Vaclav Kotesovec_, May 13 2011 %E A190394 Terms a(17)-a(19) from _Vaclav Kotesovec_, Apr 01 2012 %E A190394 a(20) from _Rob Pratt_, Jul 24 2015 %E A190394 a(21)-a(32) from _Paul Tabatabai_, Nov 06 2018 %E A190394 a(33) from _Andy Huchala_, Mar 30 2024