This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190436 #14 Apr 09 2018 02:56:18 %S A190436 2,0,2,1,0,2,1,3,1,0,2,1,0,2,1,2,1,0,2,1,3,2,0,2,1,0,2,1,3,1,0,2,1,0, %T A190436 2,0,2,1,0,2,1,3,1,0,2,1,0,2,1,2,1,0,2,1,3,2,0,2,1,0,2,1,3,1,0,2,1,0, %U A190436 2,1,2,1,0,2,1,3,2,0,2,1,0,2,1,2,1,0,2,1,0,2,0,2,1,0,2,1,3,1,0,2,1,0,2,1,2,1,0,2,1,3,2,0,2,1,0 %N A190436 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,3,2) and []=floor. %C A190436 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190436 Examples: %C A190436 (golden ratio,2,0): A078588, A005653, A005652 %C A190436 (golden ratio,2,1): A190427 - A190430 %C A190436 (golden ratio,3,0): A140397 - A190400 %C A190436 (golden ratio,3,1): A140431 - A190435 %C A190436 (golden ratio,3,2): A140436 - A190439 %C A190436 (golden ratio,4,c): A140440 - A190461 %H A190436 G. C. Greubel, <a href="/A190436/b190436.txt">Table of n, a(n) for n = 1..10000</a> %t A190436 r = GoldenRatio; b = 3; c = 2; %t A190436 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190436 t = Table[f[n], {n, 1, 320}] %t A190436 Flatten[Position[t, 0]] (* A190437 *) %t A190436 Flatten[Position[t, 1]] (* A190438 *) %t A190436 Flatten[Position[t, 2]] (* A190439 *) %t A190436 Flatten[Position[t, 3]] (* A302253 *) %Y A190436 Cf. A190437, A190438, A190439, A190440. %K A190436 nonn %O A190436 1,1 %A A190436 _Clark Kimberling_, May 10 2011