This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190440 #9 Mar 30 2012 18:57:28 %S A190440 2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0, %T A190440 2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0, %U A190440 2,1,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,2,1,3,2,0 %N A190440 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor. %C A190440 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190440 Examples: %C A190440 (golden ratio,2,0): A078588, A005653, A005652 %C A190440 (golden ratio,2,1): A190427-A190430 %C A190440 (golden ratio,3,0): A140397-A190400 %C A190440 (golden ratio,3,1): A140431-A190435 %C A190440 (golden ratio,3,2): A140436-A190439 %F A190440 a(n)=[4nr]-4[nr], where r=golden ratio. %t A190440 r = GoldenRatio; %t A190440 f[n_] := Floor[4*n*r] - 4*Floor[n*r]; %t A190440 t = Table[f[n], {n, 1, 320}] (* A190440 *) %t A190440 Flatten[Position[t, 0]] (* A190240 *) %t A190440 Flatten[Position[t, 1]] (* A190249 *) %t A190440 Flatten[Position[t, 2]] (* A190442 *) %t A190440 Flatten[Position[t, 3]] (* A190443 *) %t A190440 Flatten[Position[t, 4]] (* A190248 *) %Y A190440 Cf. A190889, A190442, A190443, A190251. %K A190440 nonn %O A190440 1,1 %A A190440 _Clark Kimberling_, May 10 2011