cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190440 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor.

This page as a plain text file.
%I A190440 #9 Mar 30 2012 18:57:28
%S A190440 2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,
%T A190440 2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,
%U A190440 2,1,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,2,1,3,2,0
%N A190440 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor.
%C A190440 Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.
%C A190440 Examples:
%C A190440 (golden ratio,2,0):  A078588, A005653, A005652
%C A190440 (golden ratio,2,1):  A190427-A190430
%C A190440 (golden ratio,3,0):  A140397-A190400
%C A190440 (golden ratio,3,1):  A140431-A190435
%C A190440 (golden ratio,3,2):  A140436-A190439
%F A190440 a(n)=[4nr]-4[nr], where r=golden ratio.
%t A190440 r = GoldenRatio;
%t A190440 f[n_] := Floor[4*n*r] - 4*Floor[n*r];
%t A190440 t = Table[f[n], {n, 1, 320}] (* A190440 *)
%t A190440 Flatten[Position[t, 0]]  (* A190240 *)
%t A190440 Flatten[Position[t, 1]]  (* A190249 *)
%t A190440 Flatten[Position[t, 2]]  (* A190442 *)
%t A190440 Flatten[Position[t, 3]]  (* A190443 *)
%t A190440 Flatten[Position[t, 4]]  (* A190248 *)
%Y A190440 Cf. A190889, A190442, A190443, A190251.
%K A190440 nonn
%O A190440 1,1
%A A190440 _Clark Kimberling_, May 10 2011