This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190445 #6 Mar 30 2012 18:57:28 %S A190445 3,1,4,2,0,3,1,4,2,1,3,2,0,3,1,4,2,1,3,2,4,3,1,3,2,0,3,1,4,2,1,3,2,0, %T A190445 3,1,4,2,1,3,1,4,2,1,3,2,0,3,1,4,2,1,3,2,4,3,1,4,2,0,3,1,4,2,1,3,2,0, %U A190445 3,1,4,2,1,3,2,4,2,1,3,2,0,3,1,4,2,1,3,2,0,3,1,4,2,0,3,1,4,2,1,3,2,0,3,1,4,2,1,3,2,4,3,1,3,2,0,3,1,4,2,1,3,2,0,3,1,4,2,1,3,1,4,2,1,3,2,0 %N A190445 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,1) and []=floor. %C A190445 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190445 Examples: %C A190445 (golden ratio,2,0): A078588, A005653, A005652 %C A190445 (golden ratio,2,1): A190427-A190430 %C A190445 (golden ratio,3,0): A140397-A190400 %C A190445 (golden ratio,3,1): A140431-A190435 %C A190445 (golden ratio,3,2): A140436-A190439 %C A190445 (golden ratio,4,c): A190440-A190461 %t A190445 r = GoldenRatio; b = 4; c = 1; %t A190445 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190445 t = Table[f[n], {n, 1, 320}] %t A190445 Flatten[Position[t, 0]] %t A190445 Flatten[Position[t, 1]] %t A190445 Flatten[Position[t, 2]] %t A190445 Flatten[Position[t, 3]] %t A190445 Flatten[Position[t, 4]] %Y A190445 Cf. A190446-A190450, A190427. %K A190445 nonn %O A190445 1,1 %A A190445 _Clark Kimberling_, May 10 2011