cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190462 Numbers with prime factorization pqrstu^2v^2.

This page as a plain text file.
%I A190462 #9 Aug 25 2016 23:14:11
%S A190462 3063060,3423420,4144140,4476780,5105100,5225220,5290740,5419260,
%T A190462 5585580,5705700,6056820,6404580,6666660,6832980,6906900,7147140,
%U A190462 7158060,7304220,7387380,7461300,7636860,7657650,7747740,7987980,8075340,8163540,8314020,8468460
%N A190462 Numbers with prime factorization pqrstu^2v^2.
%H A190462 T. D. Noe, <a href="/A190462/b190462.txt">Table of n, a(n) for n = 1..1000</a>
%H A190462 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>
%t A190462 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,1,2,2}; Select[Range[6000000],f]
%o A190462 (PARI) list(lim)=my(v=List(),t1,t2,t3,t4,t5,t6); forprime(p1=2,sqrtint(lim\60060), t1=p1^2; forprime(p2=2,sqrtint(lim\(2310*t1)), if(p2==p1, next); t2=p2^2*t1; forprime(p3=2,lim\(210*t2), if(p3==p1 || p3==p2, next); t3=p3*t2; forprime(p4=2,lim\(30*t3), if(p4==p1 || p4==p2 || p4==p3, next); t4=p4*t3; forprime(p5=2,lim\(6*t4), if(p5==p1 || p5==p2 || p5==p3 || p5==p4, next); t5=p5*t4; forprime(p6=2,lim\(2*t5), if(p6==p1 || p6==p2 || p6==p3 || p6==p4 || p6==p5, next); t6=p6*t5; forprime(p7=2,lim\t6, if(p7==p1 || p7==p2 || p7==p3 || p7==p4 || p7==p5 || p7==p6, next); listput(v, t6*p7)))))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016
%Y A190462 Cf. A190390, A190391, A190316.
%K A190462 nonn
%O A190462 1,1
%A A190462 _Vladimir Joseph Stephan Orlovsky_, May 10 2011
%E A190462 Extended by _T. D. Noe_, May 10 2011