This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190476 #30 Jul 25 2023 09:25:31 %S A190476 1,0,1,1,3,11,25,127,441,1954,10011,45266,264583,1445380,8585655, %T A190476 55660801,352151073,2482766225,17559191557,129772490863,1013321885751, %U A190476 7972553309386,66428256850935,564371629663172,4946383948336009,45027627776367801,416996057365437135 %N A190476 The number of partitions of the set {1,2,...,n} into subsets (blocks,cells) having a prime number of elements. %C A190476 Equivalently, a(n) is the number of equivalence relations on a set of n distinct elements such that each equivalence class contains a prime number of elements. %H A190476 Alois P. Heinz, <a href="/A190476/b190476.txt">Table of n, a(n) for n = 0..250</a> %F A190476 E.g.f.: exp(Sum_{p=prime} x^p/p!). %F A190476 a(0) = 1; a(n) = Sum_{p<=n, p prime} binomial(n-1,p-1) * a(n-p). - _Seiichi Manyama_, Feb 26 2022 %p A190476 with(numtheory): %p A190476 b:= proc(n, i) option remember; local p; %p A190476 if n=0 then 1 %p A190476 elif n=1 or i<1 then 0 %p A190476 else p:= ithprime(i); %p A190476 b(n, i-1) +add(mul(binomial(n-(h-1)*p, p), h=1..j) %p A190476 *b(n-j*p, i-1)/j! , j=1..iquo(n,p)) %p A190476 fi %p A190476 end: %p A190476 a:= n-> b(n, pi(n)): %p A190476 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 02 2011 %t A190476 a= Table[Prime[n],{n,1,20}]; %t A190476 b= Sum[x^i/i!,{i,a}]; %t A190476 Range[0,20]! CoefficientList[Series[Exp[b],{x,0,20}],x] %o A190476 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*x^k/k!)))) \\ _Seiichi Manyama_, Feb 26 2022 %o A190476 (PARI) a(n) = if(n==0, 1, sum(k=1, n, isprime(k)*binomial(n-1, k-1)*a(n-k))); \\ _Seiichi Manyama_, Feb 26 2022 %Y A190476 Cf. A000110, A364450. %K A190476 nonn %O A190476 0,5 %A A190476 _Geoffrey Critzer_, May 10 2011