This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190483 #20 Mar 12 2021 07:53:30 %S A190483 1,2,0,1,0,1,2,1,1,0,1,2,1,2,0,1,0,1,2,0,1,0,1,2,1,1,0,1,0,1,2,0,1,0, %T A190483 1,2,1,1,0,1,2,1,2,0,1,0,1,2,1,1,0,1,2,1,1,0,1,0,1,2,0,1,0,1,2,1,1,0, %U A190483 1,2,1,2,0,1,0,1,2,1,1,0,1,2,1,2,0,1,0,1,2,0,1,0,1,2,1,1,0,1,0,1,2,0,1,0,1,2,1,1,0,1,2,1,2,0 %N A190483 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),2,1) and []=floor. %C A190483 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190483 Examples: %C A190483 (golden ratio,2,1): A190427-A190430 %C A190483 (sqrt(2),2,0): A190480 %C A190483 (sqrt(2),2,1): A190483-A190486 %C A190483 (sqrt(2),3,0): A190487-A190490 %C A190483 (sqrt(2),3,1): A190491-A190495 %C A190483 (sqrt(2),3,2): A190496-A190500 %H A190483 G. C. Greubel, <a href="/A190483/b190483.txt">Table of n, a(n) for n = 1..1000</a> %t A190483 r = Sqrt[2]; b = 2; c = 1; %t A190483 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190483 t = Table[f[n], {n, 1, 200}] (* A190483 *) %t A190483 Flatten[Position[t, 0]] (* A190484 *) %t A190483 Flatten[Position[t, 1]] (* A190485 *) %t A190483 Flatten[Position[t, 2]] (* A190486 *) %o A190483 (Python) %o A190483 from sympy import sqrt, floor %o A190483 r=sqrt(2) %o A190483 def a(n): return floor((2*n + 1)*r) - 2*floor(n*r) - floor(r) %o A190483 print([a(n) for n in range(1, 501)]) # _Indranil Ghosh_, Jul 02 2017 %Y A190483 Cf. A190484, A190485, A190486. %K A190483 nonn %O A190483 1,2 %A A190483 _Clark Kimberling_, May 11 2011