This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190485 #20 May 06 2021 22:12:20 %S A190485 1,4,6,8,9,11,13,16,18,21,23,25,26,28,30,33,35,37,38,40,42,45,47,49, %T A190485 50,52,54,55,57,59,62,64,66,67,69,71,74,76,78,79,81,83,86,88,91,93,95, %U A190485 96,98,100,103,105,107,108,110,112,115,117,120,122,124,125,127,129,132,134,136,137,139,141,144,146,148,149,151,153,154,156,158 %N A190485 Positions of 1 in A190483. %C A190485 See A190483. %H A190485 G. C. Greubel, <a href="/A190485/b190485.txt">Table of n, a(n) for n = 1..1000</a> %t A190485 r = Sqrt[2]; b = 2; c = 1; %t A190485 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190485 t = Table[f[n], {n, 1, 200}] (* A190483 *) %t A190485 Flatten[Position[t, 0]] (* A190484 *) %t A190485 Flatten[Position[t, 1]] (* A190485 *) %t A190485 Flatten[Position[t, 2]] (* A190486 *) %o A190485 (Python) %o A190485 from sympy import sqrt, floor %o A190485 r=sqrt(2) %o A190485 def a190483(n): return floor((2*n + 1)*r) - 2*floor(n*r) - floor(r) %o A190485 print([n for n in range(1, 501) if a190483(n)==1]) # _Indranil Ghosh_, Jul 02 2017 %Y A190485 Cf. A190483, A190485, A190486. %K A190485 nonn %O A190485 1,2 %A A190485 _Clark Kimberling_, May 11 2011