This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190486 #18 Mar 12 2021 07:51:39 %S A190486 2,7,12,14,19,24,31,36,41,43,48,53,60,65,70,72,77,82,84,89,94,101,106, %T A190486 111,113,118,123,130,135,140,142,147,152,159,164,171,176,181,183,188, %U A190486 193,200,205,210,212,217,222,229,234,239,241,246,251,253,258,263,270,275,280,282,287,292,299,304,309,311,316 %N A190486 Positions of 2 in A190483. %C A190486 See A190483. %H A190486 G. C. Greubel, <a href="/A190486/b190486.txt">Table of n, a(n) for n = 1..1000</a> %t A190486 r = Sqrt[2]; b = 2; c = 1; %t A190486 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190486 t = Table[f[n], {n, 1, 200}] (* A190483 *) %t A190486 Flatten[Position[t, 0]] (* A190484 *) %t A190486 Flatten[Position[t, 1]] (* A190485 *) %t A190486 Flatten[Position[t, 2]] (* A190486 *) %o A190486 (Python) %o A190486 from sympy import sqrt, floor %o A190486 r=sqrt(2) %o A190486 def a190483(n): return floor((2*n + 1)*r) - 2*floor(n*r) - floor(r) %o A190486 print([n for n in range(1, 501) if a190483(n)==2]) # _Indranil Ghosh_, Jul 02 2017 %Y A190486 Cf. A190483, A190484, A190485. %K A190486 nonn %O A190486 1,1 %A A190486 _Clark Kimberling_, May 11 2011