This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190491 #14 Jul 01 2017 02:55:52 %S A190491 1,2,1,2,0,1,3,1,2,0,2,3,1,2,1,2,0,1,3,1,2,0,1,3,1,2,0,2,0,1,2,1,2,0, %T A190491 1,3,1,2,0,2,3,1,2,1,2,0,1,3,1,2,0,2,3,1,2,1,2,0,1,2,1,2,0,1,3,1,2,0, %U A190491 2,3,1,2,1,2,0,1,3,1,2,0,2,3,1,2,1,2,0,1,3,1,2,0,1,3,1,2,0,2,0,1,2,1,2,0,1,3,1,2,0,2,3,1,2,1,2,0,1,3,1,2,0,2,3,1,2,0,2,0 %N A190491 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),3,1) and []=floor. %C A190491 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190491 Examples: %C A190491 (golden ratio,2,1): A190427-A190430 %C A190491 (sqrt(2),2,0): A190480, A120743, A170749 %C A190491 (sqrt(2),2,1): A190483-A190486 %C A190491 (sqrt(2),3,0): A190487-A190490 %C A190491 (sqrt(2),3,1): A190491-A190495 %C A190491 (sqrt(2),3,2): A190496-A190500 %H A190491 G. C. Greubel, <a href="/A190491/b190491.txt">Table of n, a(n) for n = 1..1000</a> %t A190491 r = Sqrt[2]; b = 3; c = 1; %t A190491 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190491 t = Table[f[n], {n, 1, 200}] (* A190491 *) %t A190491 Flatten[Position[t, 0]] (* A190492 *) %t A190491 Flatten[Position[t, 1]] (* A190493 *) %t A190491 Flatten[Position[t, 2]] (* A190494 *) %t A190491 Flatten[Position[t, 3]] (* A190495 *) %Y A190491 Cf. A190492, A190493, A190494, A190495. %K A190491 nonn %O A190491 1,2 %A A190491 _Clark Kimberling_, May 11 2011