This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190496 #14 Jul 01 2017 12:29:08 %S A190496 2,3,1,2,1,2,3,1,3,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1, %T A190496 2,3,1,3,1,2,3,2,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1, %U A190496 2,3,2,3,1,2,1,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,3,2,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0 %N A190496 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),3,2) and []=floor. %C A190496 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190496 Examples: %C A190496 (golden ratio,2,1): A190427-A190430 %C A190496 (sqrt(2),2,0): A190480 %C A190496 (sqrt(2),2,1): A190483-A190486 %C A190496 (sqrt(2),3,0): A190487-A190490 %C A190496 (sqrt(2),3,1): A190491-A190495 %C A190496 (sqrt(2),3,2): A190496-A190500 %H A190496 G. C. Greubel, <a href="/A190496/b190496.txt">Table of n, a(n) for n = 1..1000</a> %t A190496 r = Sqrt[2]; b = 3; c = 2; %t A190496 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190496 t = Table[f[n], {n, 1, 200}] (* A190496 *) %t A190496 Flatten[Position[t, 0]] (* A190497 *) %t A190496 Flatten[Position[t, 1]] (* A190498 *) %t A190496 Flatten[Position[t, 2]] (* A190499 *) %t A190496 Flatten[Position[t, 3]] (* A190500 *) %Y A190496 Cf. A190497, A190498, A190499, A190500. %K A190496 nonn %O A190496 1,1 %A A190496 _Clark Kimberling_, May 11 2011