cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190496 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),3,2) and []=floor.

This page as a plain text file.
%I A190496 #14 Jul 01 2017 12:29:08
%S A190496 2,3,1,2,1,2,3,1,3,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,
%T A190496 2,3,1,3,1,2,3,2,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,
%U A190496 2,3,2,3,1,2,1,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,3,2,3,1,2,0,2,3,1,2,1,2,3,1,3,1,2,0
%N A190496 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),3,2) and []=floor.
%C A190496 Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.
%C A190496 Examples:
%C A190496 (golden ratio,2,1):  A190427-A190430
%C A190496 (sqrt(2),2,0):  A190480
%C A190496 (sqrt(2),2,1):  A190483-A190486
%C A190496 (sqrt(2),3,0):  A190487-A190490
%C A190496 (sqrt(2),3,1):  A190491-A190495
%C A190496 (sqrt(2),3,2):  A190496-A190500
%H A190496 G. C. Greubel, <a href="/A190496/b190496.txt">Table of n, a(n) for n = 1..1000</a>
%t A190496 r = Sqrt[2]; b = 3; c = 2;
%t A190496 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t A190496 t = Table[f[n], {n, 1, 200}]  (* A190496 *)
%t A190496 Flatten[Position[t, 0]]   (* A190497 *)
%t A190496 Flatten[Position[t, 1]]   (* A190498 *)
%t A190496 Flatten[Position[t, 2]]   (* A190499 *)
%t A190496 Flatten[Position[t, 3]]   (* A190500 *)
%Y A190496 Cf. A190497, A190498, A190499, A190500.
%K A190496 nonn
%O A190496 1,1
%A A190496 _Clark Kimberling_, May 11 2011