This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190544 #14 Jul 03 2017 22:37:18 %S A190544 1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0,1,3,1,2,0, %T A190544 1,3,1,2,0,2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0, %U A190544 2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,0 %N A190544 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),4,0) and []=floor. %C A190544 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190544 Examples: %C A190544 (golden ratio,2,1): A190427-A190430 %C A190544 (sqrt(2),2,0): A190480 %C A190544 (sqrt(2),2,1): A190483-A190486 %C A190544 (sqrt(2),3,0): A190487-A190490 %C A190544 (sqrt(2),3,1): A190491-A190495 %C A190544 (sqrt(2),3,2): A190496-A190500 %C A190544 (sqrt(2),4,c): A190544-A190566 %H A190544 G. C. Greubel, <a href="/A190544/b190544.txt">Table of n, a(n) for n = 1..1000</a> %F A190544 a(n) = [4nr] - 4*[nr], where r=sqrt(2). %t A190544 r = Sqrt[2]; b = 4; c = 0; %t A190544 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190544 t = Table[f[n], {n, 1, 200}] (* A190544 *) %t A190544 Flatten[Position[t, 0]] (* A190545 *) %t A190544 Flatten[Position[t, 1]] (* A190546 *) %t A190544 Flatten[Position[t, 2]] (* A190547 *) %t A190544 Flatten[Position[t, 3]] (* A190548 *) %Y A190544 Cf. A190545, A190546, A190547, A190548. %K A190544 nonn %O A190544 1,2 %A A190544 _Clark Kimberling_, May 12 2011