This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190549 #11 Jul 04 2017 18:27:10 %S A190549 2,3,1,3,0,2,4,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0, %T A190549 2,4,1,3,1,2,4,2,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1, %U A190549 2,4,2,3,1,3,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3 %N A190549 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),4,1) and []=floor. %C A190549 Write a(n) = [(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190549 Examples: %C A190549 (golden ratio,2,1): A190427-A190430 %C A190549 (sqrt(2),2,0): A190480-A190482 %C A190549 (sqrt(2),2,1): A190483-A190486 %C A190549 (sqrt(2),3,0): A190487-A190490 %C A190549 (sqrt(2),3,1): A190491-A190495 %C A190549 (sqrt(2),3,2): A190496-A190500 %C A190549 (sqrt(2),4,c): A190544-A190566 %H A190549 G. C. Greubel, <a href="/A190549/b190549.txt">Table of n, a(n) for n = 1..1000</a> %t A190549 r = Sqrt[2]; b = 4; c = 1; %t A190549 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190549 t = Table[f[n], {n, 1, 200}] (* A190549 *) %t A190549 Flatten[Position[t, 0]] (* A190550 *) %t A190549 Flatten[Position[t, 1]] (* A190551 *) %t A190549 Flatten[Position[t, 2]] (* A190552 *) %t A190549 Flatten[Position[t, 3]] (* A190553 *) %t A190549 Flatten[Position[t, 4]] (* A190554 *) %Y A190549 Cf. A190550, A190551, A190552, A190553. %K A190549 nonn %O A190549 1,1 %A A190549 _Clark Kimberling_, May 12 2011