This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190561 #10 Jul 04 2017 18:28:12 %S A190561 1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,0,2,0,1,3,1,2,0, %T A190561 2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,1,3,1,2,0,2,3,1,3,0, %U A190561 2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,3,1,3,0,2,0,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,2,3,1,3,0,2,4,1,3,1,2,0,1,3,1,2,0,2,3,1,3,0 %N A190561 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),4,3) and []=floor. %C A190561 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190561 Examples: %C A190561 (golden ratio,2,1): A190427-A190430 %C A190561 (sqrt(2),2,0): A190480-A190482 %C A190561 (sqrt(2),2,1): A190483-A190486 %C A190561 (sqrt(2),3,0): A190487-A190490 %C A190561 (sqrt(2),3,1): A190491-A190495 %C A190561 (sqrt(2),3,2): A190496-A190500 %C A190561 (sqrt(2),4,c): A190544-A190566 %H A190561 G. C. Greubel, <a href="/A190561/b190561.txt">Table of n, a(n) for n = 1..1000</a> %t A190561 r = Sqrt[2]; b = 4; c = 3; %t A190561 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190561 t = Table[f[n], {n, 1, 200}] (* A190561 *) %t A190561 Flatten[Position[t, 0]] (* A190562 *) %t A190561 Flatten[Position[t, 1]] (* A190563 *) %t A190561 Flatten[Position[t, 2]] (* A190564 *) %t A190561 Flatten[Position[t, 3]] (* A190565 *) %t A190561 Flatten[Position[t, 4]] (* A190566 *) %Y A190561 Cf. A190562 to A190566. %K A190561 nonn %O A190561 1,2 %A A190561 _Clark Kimberling_, May 12 2011