A190581 Value of z in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0).
1, 21, 1, 1, 39, 3, 294, 7, 1, 7, 9954, 1, 1, 57, 42, 582, 182, 1, 1, 129, 2, 3, 6111, 197028, 217, 7083, 1, 3, 1, 1, 1323, 620505, 3318, 13, 43, 3606, 1302, 3, 111, 330498, 3, 216266610, 13, 273, 1, 5733, 590736058375050, 3, 1, 117, 1014, 25767, 19, 37, 1878, 1029364, 1, 37045412880, 1, 1, 1, 11285694
Offset: 1
Keywords
Examples
a(18) = 1 because A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
Links
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [broken link]
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [From the Wayback Machine]
- Nakao Hisayasu, Rational Points on Elliptic Curves: x^3+y^3=n (nna2.html up to nna22.html)
- Hisanori Mishima, Solutions of Diophantine equation x^3+y^3=A.z^3 ...
Comments