A190585 E.g.f. Product_{n>=1} (1 - x^n)^(-u(n)/n) where u(n) is the unitary Moebius function (A076479).
1, 1, 1, 1, -5, -29, -89, -209, -9239, -120455, -801359, -3674879, 15450931, 505760971, 4925214295, 30957618511, -3280733667119, -49063880680079, -327527326905119, -1087577476736255, 97366167074820331, 1723137650565888691, 13360549076712501511
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..65
Crossrefs
Cf. A076479.
Programs
-
PARI
N=66; /* that many terms */ /* First compute the unitary Moebius function */ mu=vector(N); mu[1]=1; { for (n=2,N, s = 0; fordiv (n,d, if (gcd(d,n/d)!=1, next() ); /* unitary divisors only */ s += mu[d]; ); mu[n] = -s; ); }; egf=prod(n=1,N,(1-x^n)^(-mu[n]/n)); /* = 1 +x +1/2*x^2 +1/6*x^3 -5/24*x^4 +-... */ Vec(serlaplace(egf)) /* show terms */
Comments