This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190645 #15 Dec 30 2017 03:28:30 %S A190645 350,738,1276,1314,2890,5052,6356,9052,9054,9950,14050,15966,16852, %T A190645 17916,17948,19166,19852,22475,23348,23420,24350,25182,25184,25186, %U A190645 30476,32418,41058,41060,47646,47648,54927,56452,57436,59924,61794,61796,66787,68348 %N A190645 Numbers n such that d(n-2) = d(n) = d(n+2) = 12 where d(n)=A000005(n). %C A190645 Numbers of the form A190355(n)+1 such that A190355(n)=A190355(n+1)-2. %H A190645 G. C. Greubel, <a href="/A190645/b190645.txt">Table of n, a(n) for n = 1..5000</a> %t A190645 f[n_] := DivisorSigma[0,n]; lst = {}; n = 2; While[Length[lst] < 40, n++; If[f[n-2] == f[n] == f[n+2] == 12, AppendTo[lst, n]]]; lst (* _T. D. Noe_, May 26 2011 *) %t A190645 Select[Range[2, 5000], DivisorSigma[0, # - 2] == 12 && DivisorSigma[0, #] == 12 && DivisorSigma[0, # + 2] == 12 &] (* _G. C. Greubel_, Dec 29 2017 *) %o A190645 (PARI) isok(n) = (n>2) && (numdiv(n-2)==12) && (numdiv(n)==12) && (numdiv(n+2)==12); \\ _Michel Marcus_, Dec 30 2017 %Y A190645 Cf. A000005(number of divisors of n), A190355. %K A190645 nonn %O A190645 1,1 %A A190645 _Juri-Stepan Gerasimov_, May 15 2011 %E A190645 Corrected and extended by _T. D. Noe_, May 26 2011