This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190660 #25 Apr 28 2014 12:45:28 %S A190660 1,0,1,1,2,2,3,5,7,9,13,19,27,37,53,75,106,150,212,300,424,600,848, %T A190660 1200,1697,2399,3393,4799,6786,9598,13573,19195,27146,38390,54292, %U A190660 76780,108584,153560,217167,307121,434334,614242,868669,1228483,1737338,2456966 %N A190660 Number of triangular numbers T(k) between powers of 2, 2^(n-1) < T(k) <= 2^n. %C A190660 Count of triangular numbers between powers of 2. %C A190660 a(n)/a(n-1) converges to sqrt(2) (A002193). [_John W. Nicholson_, May 16 2011] %C A190660 Essentially first differences of A017911. - _Jeremy Gardiner_, Aug 11 2013. Also second differences of A001521. - _N. J. A. Sloane_, Apr 27 2014 %H A190660 Vincenzo Librandi, <a href="/A190660/b190660.txt">Table of n, a(n) for n = 0..1000</a> %e A190660 Between 2^(6-1)=32 and 2^6=64 are T(8)=36, T(9)=45, T(10)=55 so A190660(6)=3. %t A190660 TriangularIndex[n_] := (-1 + Sqrt[1 + 8*n])/2; Differences[Table[Floor[TriangularIndex[2^n]], {n, -1, 50}]] (* _T. D. Noe_, May 19 2011 *) %o A190660 (PARI) a(n) = if (n==0, 1, sum(i=2^(n-1)+1, 2^n, ispolygonal(i, 3))); \\ _Michel Marcus_, Apr 28 2014 %Y A190660 Cf. A001521, A002193, A017911. %K A190660 nonn %O A190660 0,5 %A A190660 _John W. Nicholson_, May 16 2011 %E A190660 Extended by _T. D. Noe_, May 19 2011