cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190698 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),4,1) and [ ]=floor.

This page as a plain text file.
%I A190698 #9 Jul 04 2017 21:19:47
%S A190698 3,2,1,4,3,2,1,4,3,2,0,3,2,1,4,3,2,1,4,3,2,1,4,3,1,0,3,2,1,4,3,2,1,4,
%T A190698 3,2,1,4,2,1,0,3,2,1,4,3,2,1,4,3,2,0,3,2,1,4,3,2,1,4,3,2,1,4,3,1,0,3,
%U A190698 2,1,4,3,2,1,4,3,2,1,4,2,1,0,3,2,1,4,3,2,1,4,3,2,1,3,2,1,0,3,2,1,4,3,2,1,4,3,2,0,3,2,1,4,3,2,1,4,3,2,1,4,3,1,0,3,2,1,4
%N A190698 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),4,1) and [ ]=floor.
%C A190698 Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.
%C A190698 Examples:
%C A190698 (golden ratio,2,1):  A190427-A190430
%C A190698 (sqrt(2),2,0):  A190480-A190482
%C A190698 (sqrt(2),2,1):  A190483-A190486
%C A190698 (sqrt(2),3,0):  A190487-A190490
%C A190698 (sqrt(2),3,1):  A190491-A190495
%C A190698 (sqrt(2),3,2):  A190496-A190500
%C A190698 (sqrt(2),4,c):  A190544-A190566
%H A190698 G. C. Greubel, <a href="/A190698/b190698.txt">Table of n, a(n) for n = 1..1000</a>
%t A190698 r = Sqrt[3]; b = 4; c = 1;
%t A190698 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t A190698 t = Table[f[n], {n, 1, 200}] (* A190698 *)
%t A190698 Flatten[Position[t, 0]]      (* A190699 *)
%t A190698 Flatten[Position[t, 1]]      (* A190700 *)
%t A190698 Flatten[Position[t, 2]]      (* A190701 *)
%t A190698 Flatten[Position[t, 3]]      (* A190702 *)
%t A190698 Flatten[Position[t, 4]]      (* A190703 *)
%Y A190698 Cf. A190699-A190703.
%K A190698 nonn
%O A190698 1,1
%A A190698 _Clark Kimberling_, May 17 2011