This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190704 #10 Mar 18 2023 09:05:07 %S A190704 3,2,1,4,3,2,0,3,2,1,0,3,2,1,4,3,2,1,4,3,1,0,3,2,1,0,3,2,1,4,3,2,1,4, %T A190704 2,1,0,3,2,1,0,3,2,1,4,3,2,1,3,2,1,0,3,2,1,4,3,2,1,4,3,2,0,3,2,1,0,3, %U A190704 2,1,4,3,2,1,4,3,1,0,3,2,1,0,3,2,1,4,3,2,1,4,2,1,0,3,2,1,0,3,2,1,4,3,2,0,3,2,1,0,3,2,1,4,3,2,1,4,3,1,0,3,2,1,0,3,2,1,4,3,2,1,4,2 %N A190704 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),4,2) and [ ]=floor. %C A190704 Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. %C A190704 Examples: %C A190704 (golden ratio,2,1): A190427-A190430 %C A190704 (sqrt(2),2,0): A190480-A190482 %C A190704 (sqrt(2),2,1): A190483-A190486 %C A190704 (sqrt(2),3,0): A190487-A190490 %C A190704 (sqrt(2),3,1): A190491-A190495 %C A190704 (sqrt(2),3,2): A190496-A190500 %C A190704 (sqrt(2),4,c): A190544-A190566 %t A190704 r = Sqrt[3]; b = 4; c = 2; %t A190704 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; %t A190704 t = Table[f[n], {n, 1, 200}] (* A190704 *) %t A190704 Flatten[Position[t, 0]] (* A190673 *) %t A190704 Flatten[Position[t, 1]] (* A190706 *) %t A190704 Flatten[Position[t, 2]] (* A190707 *) %t A190704 Flatten[Position[t, 3]] (* A190708 *) %t A190704 Flatten[Position[t, 4]] (* A190709 *) %t A190704 With[{r=Sqrt[3],nn=140},Table[Floor[(4n+2)r]-4Floor[n r]-Floor[2r],{n,nn}]] (* _Harvey P. Dale_, Mar 18 2023 *) %Y A190704 Cf. A190673, A190706-A190709. %K A190704 nonn %O A190704 1,1 %A A190704 _Clark Kimberling_, May 17 2011