This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190722 #19 Sep 08 2022 08:45:57 %S A190722 3,45751,149351,171529,223099,434237,678077,706841,1996297,3993037, %T A190722 6340457,7199113,7419761,9000317,13129271,15052777,17193217,18436879, %U A190722 18749881,18998519,23353469,23689423,33746663,40985411,41437751,43547797,51198097,53773651,56825687,60207809,62190113,79778899,81708353,83019421 %N A190722 Primes p such that A008472(p-1) = A008472(p+1) and is a prime. %C A190722 A008472 is the sum of the distinct primes dividing n. %H A190722 Amiram Eldar, <a href="/A190722/b190722.txt">Table of n, a(n) for n = 1..223</a> (calculated from the b-file at A203182) %e A190722 For p = 45751, p-1 = 2*3*5^3*61; 2+3+5+61=71 and p+1 = 2^3*7*19*43; 2+7+19+43 = 71. %t A190722 fQ[n_] := Block[{pn = Plus @@ (First@# & /@ FactorInteger[n - 1]), pp = Plus@@ (First@# & /@ FactorInteger[n + 1])}, pn == pp && PrimeQ[pn]]; %t A190722 p = 2; lst = {}; While[p < 10^8, If[fQ@p, AppendTo[lst, p]; Print@p]; p = %t A190722 NextPrime@p]; lst %t A190722 pQ[n_]:=Module[{p1=Total[FactorInteger[n-1][[All,1]]],p2=Total[ FactorInteger[ n+1][[All,1]]]},p1==p2&&PrimeQ[p1]]; Select[ Prime[ Range[5*10^6]],pQ] (* _Harvey P. Dale_, Jun 18 2017 *) %o A190722 (Magma) [p:p in PrimesInInterval(3,10^8)|(&+PrimeDivisors(p-1) eq &+PrimeDivisors(p+1)) and IsPrime(&+PrimeDivisors(p-1))]; // _Marius A. Burtea_, Nov 14 2019 %Y A190722 Cf. A190680, A008472, A086711. %Y A190722 Subsequence of A203182. %K A190722 nonn %O A190722 1,1 %A A190722 _Robert G. Wilson v_, May 17 2011