This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190732 #68 Feb 16 2025 08:33:14 %S A190732 1,1,2,8,3,7,9,1,6,7,0,9,5,5,1,2,5,7,3,8,9,6,1,5,8,9,0,3,1,2,1,5,4,5, %T A190732 1,7,1,6,8,8,1,0,1,2,5,8,6,5,7,9,9,7,7,1,3,6,8,8,1,7,1,4,4,3,4,2,1,2, %U A190732 8,4,9,3,6,8,8,2 %N A190732 Decimal expansion of 2/sqrt(Pi). %C A190732 According to Weisstein, some mathematicians define erf(z) without reference to this constant. %C A190732 Also equals the average absolute value of the difference of two independent normally distributed random numbers with mean 0 and variance 1. - _Jean-François Alcover_, Oct 31 2014 %C A190732 Limit_{n->oo} 2^(1-2*n^2)*n*binomial(2*n^2, n^2) is proper to compute this constant (and also Pi) in a base of power 2. - _Ralf Steiner_, Apr 23 2017 %C A190732 A gauge point marked "c" on slide rule calculating devices in the 20th century. The Pickworth reference notes its use "in calculating the contents of cylinders". - _Peter Munn_, Aug 14 2020 %D A190732 Chi Keung Cheung et al., Getting Started with Mathematica, 2nd Ed. New York: J. Wiley (2005) p. 79. %D A190732 C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London (1945), p 53, Gauge Points. %H A190732 G. C. Greubel, <a href="/A190732/b190732.txt">Table of n, a(n) for n = 1..5000</a> %H A190732 Steven R. Finch, <a href="http://arxiv.org/abs/1111.4976">Mean width of a regular simplex</a>, arxiv:1111.4976 [math.MG], 2016, mu_2. %H A190732 International Slide Rule Museum, <a href="https://www.sliderulemuseum.com/SR_Terms.htm#C">Slide Rule Terms, Glossary and Encyclopedia</a>, entry for "C". %H A190732 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Erf.html">Erf</a> %H A190732 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A190732 Equals Sum_{n>=0} (-1)^n*Gamma((n+1)/2)/Gamma(n/2+1). - _Jean-François Alcover_, Jun 12 2013 %F A190732 Equals 1/A019704. - _Michel Marcus_, Jan 09 2017 %F A190732 Equals Limit_{n->infinity} A285388(n)/A285389(n). - _Ralf Steiner_, Apr 22 2017 %e A190732 1.12837916709551257... %t A190732 RealDigits[2/Sqrt[Pi], 10, 100][[1]] %t A190732 RealDigits[Limit[2^(1 - 2 m^2) m Binomial[2 m^2, m^2], m -> Infinity], 10, 100][[1]] (* _Ralf Steiner_, Apr 22 2017 *) %o A190732 (PARI) 2/sqrt(Pi) \\ _G. C. Greubel_, Jan 09 2017 %Y A190732 Cf. A002161, A019704, A285388, A285389. %K A190732 nonn,cons %O A190732 1,3 %A A190732 _Alonso del Arte_, May 17 2011