This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190761 #24 Dec 30 2023 09:33:05 %S A190761 1,1,3,14,84,592,4670,40108,368670,3586321,36632763,390694000, %T A190761 4332131804,49777965585,591173511887,7241437905916,91331043654080, %U A190761 1184322726542850,15770586926609276,215423253906689779,3015794930248824111,43233248160139146114 %N A190761 Expansion of g.f. A(x) satisfying A(x) = x + A(A(x))^2 - A(A(x))^3. %C A190761 Compare to a formula for a g.f. of the Catalan numbers (A000108): %C A190761 C(x) = x + C(x)*C(C(x)) - C(x)*C(C(x))^2 where C(x) = (1-sqrt(1-4*x))/2. %H A190761 Paul D. Hanna, <a href="/A190761/b190761.txt">Table of n, a(n) for n = 1..300</a> %F A190761 From _Paul D. Hanna_, Dec 30 2023: (Start) %F A190761 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A190761 (1) A(x) = x + A(A(x))^2 - A(A(x))^3. %F A190761 (2) x = A( x - A(x)^2 + A(x)^3 ). %F A190761 (3) x = A(A( x - x^2 + x^3 - A(x)^2 + A(x)^3 )). %F A190761 (4) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n) * (1 - A(x))^n / n!. %F A190761 (5) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n)*(1 - A(x))^n/x / n! ). %F A190761 (6) A(x) is the unique solution to variable A in the infinite system of simultaneous equations starting with: %F A190761 A = x + B^2 - B^3; %F A190761 B = A + C^2 - C^3; %F A190761 C = B + D^2 - D^3; %F A190761 D = C + E^2 - E^3; ... %F A190761 where B = A(A(x)), C = A(A(A(x))), D = A(A(A(A(x)))), etc. %F A190761 ... (End) %e A190761 G.f.: A(x) = x + x^2 + 3*x^3 + 14*x^4 + 84*x^5 + 592*x^6 + 4670*x^7 + 40108*x^8 + 368670*x^9 + 3586321*x^10 + ... %e A190761 Related series. %e A190761 A(x) = x + A(A(x))^2 - A(A(x))^3 where %e A190761 A(A(x)) = x + 2*x^2 + 8*x^3 + 44*x^4 + 294*x^5 + 2244*x^6 + 18888*x^7 + ... %e A190761 A(A(x))^2 = x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 828*x^6 + 6368*x^7 + ... %e A190761 A(A(x))^3 = x^3 + 6*x^4 + 36*x^5 + 236*x^6 + 1698*x^7 + ... %o A190761 (PARI) {a(n) = my(A=x+x^2); for(i=1,n, A = serreverse(x - A^2 + A^3 +x*O(x^n))); polcoeff(A,n)} %o A190761 for(n=1,25,print1(a(n),", ")) %o A190761 (PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D} %o A190761 {a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A= x + sum(m=1, n, Dx(m-1, A^(2*m)*(1 - A)^m )/m!) +x*O(x^n)); polcoeff(A, n)} %o A190761 for(n=1, 25, print1(a(n), ", ")) \\ _Paul D. Hanna_, Dec 30 2023 %Y A190761 Cf. A368562, A213591. %K A190761 nonn %O A190761 1,3 %A A190761 _Paul D. Hanna_, May 18 2011