cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190762 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(1/2),2,1) and [ ]=floor.

This page as a plain text file.
%I A190762 #5 Mar 30 2012 18:57:29
%S A190762 2,1,0,2,1,1,2,2,1,0,2,1,1,2,1,1,0,2,1,0,2,1,1,2,2,1,0,2,1,1,2,1,1,0,
%T A190762 2,1,1,2,1,1,2,2,1,0,2,1,1,2,2,1,0,2,1,1,2,1,1,0,2,1,0,2,1,1,2,2,1,0,
%U A190762 2,1,1,2,1,1,0,2,1,1,2,1,1,2,2,1,0,2,1,1,2,1,1,0,2,1,1,2,1,1,0,2,1,0,2,1,1,2,2,1,0,2,1,1,2,1,1,0,2,1,0,2,1,1,2,2,1,0,2,1,1,2,1,1
%N A190762 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(1/2),2,1) and [ ]=floor.
%C A190762 Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.
%C A190762 Examples:
%C A190762 (golden ratio,2,1):  A190427-A190430
%C A190762 (sqrt(2),2,0):  A190480-A190482
%C A190762 (sqrt(2),2,1):  A190483-A190486
%C A190762 (sqrt(2),3,0):  A190487-A190490
%C A190762 (sqrt(2),3,1):  A190491-A190495
%C A190762 (sqrt(2),3,2):  A190496-A190500
%C A190762 (sqrt(2),4,c):  A190544-A190566
%t A190762 r = Sqrt[1/2]; b = 2; c = 1;
%t A190762 f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t A190762 t = Table[f[n], {n, 1, 200}] (* A190762 *)
%t A190762 Flatten[Position[t, 0]]      (* A190763 *)
%t A190762 Flatten[Position[t, 1]]      (* A190764 *)
%t A190762 Flatten[Position[t, 2]]      (* A190765 *)
%Y A190762 Cf. A190763-A190765.
%K A190762 nonn
%O A190762 1,1
%A A190762 _Clark Kimberling_, May 19 2011