A190797 For primes p and q=p+6 create primitive Pythagorean triangles with sides (q^2 - p^2)/2, (p^2 + q^2)/2, and p*q. If the two remainders of the middle and longest side modulo the shortest side are both prime, then p is in the sequence.
11, 23, 41, 83, 107, 167, 191, 263, 307, 347, 367, 461, 641, 653, 877, 881, 1103, 1187, 1367, 2081, 2393, 2677, 3607, 4283, 4357, 4967, 5081, 5231, 5387, 5471, 5651, 6037, 6197, 6311, 6353, 6857, 7823, 8117, 8693, 8747, 9221, 9743, 9851, 9923
Offset: 1
Keywords
Examples
For p=41 and q=47, the sides are (47^2 - 41^20)/2=264, 41*47=1927 and (41^2 + 43^2)/2=1945; divide 1927 and 1945 through 264 to get remainders 79 and 97. Since both are primes, p=41 is in the sequence.
Crossrefs
Cf. A023201.
Programs
-
PARI
forprime(p=5,10000,if(isprime(q=p+6),x=(q^2-p^2)/2;if(isprime(((q^2+p^2)/2)%x)&isprime(p*q%x),print1(p", "))))
Formula
If p=6k+5, then the remainders are 7 + 12*k and 25 + 12*k.
If p=6k+1, then the remainders are 7 + 24*k and 25 + 24*k.
Extensions
Corrected and extended by Franklin T. Adams-Watters, May 22 2011
Comments