This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190814 #29 Jul 03 2020 12:04:58 %S A190814 347,1427,2687,4931,13901,21557,23741,27941,28277,31247,32057,33617, %T A190814 45821,55661,55817,68207,68897,91571,128657,128981,167621,179897, %U A190814 193871,205421,221717,234191,239231,258107,258611,259157,278807,302831,305477,348431,354371 %N A190814 Initial primes of 5 consecutive primes with consecutive gaps 2, 4, 6, 8. %C A190814 All terms = {11,17} mod 30. %C A190814 a(n) + 20 is the greatest term in the sequence of 5 consecutive primes with 4 consecutive gaps 2, 4, 6, 8. - _Muniru A Asiru_, Aug 03 2017 %H A190814 Zak Seidov, <a href="/A190814/b190814.txt">Table of n, a(n) for n = 1..2000</a> %e A190814 Prime(69..73) = {347, 349, 353, 359, 367} and 349 - 347 = 2, 353 - 349 = 4, 359 - 353 = 6, 367 - 359 = 8. %p A190814 N:= 10^6: # to get all terms <= N %p A190814 Primes:= select(isprime, [seq(i,i=3..N+20,2)]): %p A190814 Primes[select(t -> [Primes[t+1]-Primes[t],Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2],Primes[t+4]-Primes[t+3]] = [2,4,6,8], [$1..nops(Primes)-4])]; # _Robert Israel_, Aug 03 2017 %t A190814 d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 4, 1], {2, 4, 6, 8}]]] (* _T. D. Noe_, May 23 2011 *) %t A190814 Select[Partition[Prime[Range[31000]],5,1],Differences[#]=={2,4,6,8}&][[All,1]] (* _Harvey P. Dale_, Jul 03 2020 *) %Y A190814 Subsequence of A190799, also subsequence of A078847. %Y A190814 Cf. A190792, A190817, A190819, A190838. %K A190814 nonn %O A190814 1,1 %A A190814 _Zak Seidov_, May 20 2011 %E A190814 Additional cross references from _Harvey P. Dale_, May 10 2014