This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190819 #30 Feb 18 2022 13:43:55 %S A190819 128981,665111,2798921,3992201,5071667,5093507,5344247,10732817, %T A190819 11920367,16197947,16462541,16655447,16943471,21456047,25793897, %U A190819 32634311,34051007,34864211,35250431,38585201,39898757,49584371,50375861,51867197,54738767,55793951 %N A190819 Initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12. %C A190819 Subsequence of A190817, a(1) = 128981 = A190817(6). %C A190819 a(n) + 42 is the greatest term in the sequence of 7 consecutive primes with 6 consecutive gaps 2, 4, 6, 8, 10, 12. - _Muniru A Asiru_, Aug 10 2017 %H A190819 Zak Seidov, <a href="/A190819/b190819.txt">Table of n, a(n) for n = 1..300</a> %e A190819 Prime(12073..12079) = {128981, 128983, 128987, 128993, 129001, 129011, 129023} with first differences {2, 4, 6, 8, 10, 12}. %p A190819 N:=10^7: # to get all terms <= N. %p A190819 Primes:=select(isprime,[seq(i,i=3..N+42,2)]): %p A190819 Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], %p A190819 Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4], Primes[t+6]-Primes[t+5] ]=[2,4,6,8,10,12], [$1..nops(Primes)-6])]; # _Muniru A Asiru_, Aug 04 2017 %t A190819 d = Differences[Prime[Range[1000000]]]; Prime[Flatten[Position[Partition[d, 6, 1], {2, 4, 6, 8, 10, 12}]]] (* _T. D. Noe_, May 23 2011 *) %t A190819 Prime[SequencePosition[Differences[Prime[Range[34*10^5]]],{2,4,6,8,10,12}][[All,1]]] (* _Harvey P. Dale_, Feb 18 2022 *) %Y A190819 Cf. A078847, A190814, A190817, A190838. %K A190819 nonn %O A190819 1,1 %A A190819 _Zak Seidov_, May 21 2011 %E A190819 Additional cross references from _Harvey P. Dale_, May 10 2014