cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190835 Number of permutations of 6 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

This page as a plain text file.
%I A190835 #19 Nov 10 2024 21:47:03
%S A190835 1,0,1,8142,351574834,47940557125969,16985819072511102549,
%T A190835 13519747358522016160671387,21671513613423101256198918372909,
%U A190835 64311863997340571475504065539218471107,330586922756304429697714946501284146322953006
%N A190835 Number of permutations of 6 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
%H A190835 Seiichi Manyama, <a href="/A190835/b190835.txt">Table of n, a(n) for n = 0..100</a> (terms 1..14 from R. J. Mathar)
%F A190835 a(n) ~ sqrt(6) * 324^n * n^(5*n) / (5^n * exp(5*n + 5)). - _Vaclav Kotesovec_, Nov 24 2018
%e A190835 Some solutions for n=3
%e A190835 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
%e A190835 ..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
%e A190835 ..3....3....1....3....1....3....3....3....1....1....3....3....3....3....3....3
%e A190835 ..2....2....3....2....3....2....2....1....2....3....1....1....2....2....2....1
%e A190835 ..1....3....2....3....2....1....3....3....1....2....3....3....3....3....1....2
%e A190835 ..2....1....3....1....3....3....1....2....3....3....2....2....2....1....3....1
%e A190835 ..3....2....1....2....1....2....3....3....1....2....3....3....1....2....2....2
%e A190835 ..2....1....3....3....3....1....2....2....3....3....1....1....3....3....3....3
%e A190835 ..3....2....2....1....2....2....1....3....2....2....2....3....1....2....2....2
%e A190835 ..1....3....3....3....3....3....2....1....3....1....1....1....3....1....1....1
%e A190835 ..3....1....2....2....2....1....1....3....2....3....2....2....2....3....3....3
%e A190835 ..1....2....1....3....1....3....2....1....3....1....1....3....1....2....1....1
%e A190835 ..3....3....2....2....3....1....1....2....2....2....3....2....2....1....2....2
%e A190835 ..1....1....3....1....2....3....3....3....1....3....2....3....1....3....1....3
%e A190835 ..2....3....2....3....1....2....1....1....2....1....1....2....3....1....2....2
%e A190835 ..3....1....1....1....2....1....3....2....3....3....3....1....1....2....3....3
%e A190835 ..1....3....3....2....3....2....2....1....1....2....2....2....2....1....1....1
%e A190835 ..2....2....1....1....1....3....3....2....3....1....3....1....3....3....3....3
%Y A190835 Row n=6 of A322013.
%K A190835 nonn
%O A190835 0,4
%A A190835 _R. H. Hardin_, May 21 2011
%E A190835 a(0)=1 prepended by _Seiichi Manyama_, Nov 16 2018