This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190836 #19 Nov 10 2024 21:46:50 %S A190836 1,0,1,56620,22875971289,36533294879349056,183095824753841610373405, %T A190836 2421032324142610480402567434373, %U A190836 74115215422015289392187745053216373265,4749303210651587675797285013227098386984170468,588242979144354234332728292738493758656488275002948671 %N A190836 Number of permutations of 7 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1. %H A190836 Seiichi Manyama, <a href="/A190836/b190836.txt">Table of n, a(n) for n = 0..88</a> (terms 1..11 from R. J. Mathar) %F A190836 a(n) ~ sqrt(7) * 117649^n * n^(6*n) / (720^n * exp(6*n + 6)). - _Vaclav Kotesovec_, Nov 24 2018 %e A190836 Some solutions for n=3 %e A190836 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1 %e A190836 ..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2 %e A190836 ..3....1....3....3....3....3....1....3....3....1....1....1....3....1....3....1 %e A190836 ..1....3....1....1....2....2....3....2....2....2....3....2....1....3....2....3 %e A190836 ..2....1....2....2....3....3....2....3....1....3....2....1....3....1....3....2 %e A190836 ..3....2....3....3....2....1....1....1....3....1....3....3....1....2....1....3 %e A190836 ..1....3....2....1....1....3....2....3....1....3....1....1....3....1....2....2 %e A190836 ..2....2....1....3....3....1....3....2....2....2....3....2....1....3....3....3 %e A190836 ..3....3....2....1....1....2....1....1....3....3....2....3....3....1....2....1 %e A190836 ..1....2....3....3....2....1....3....2....2....1....3....1....2....2....1....3 %e A190836 ..3....1....1....2....3....3....2....3....3....2....1....2....1....3....3....1 %e A190836 ..2....3....2....3....1....1....1....2....2....3....3....1....2....1....1....3 %e A190836 ..3....2....3....1....3....3....3....1....3....1....2....3....3....3....2....2 %e A190836 ..1....3....2....2....2....2....2....3....1....2....3....2....2....1....1....1 %e A190836 ..2....1....3....1....1....3....1....2....3....3....2....3....3....2....3....2 %e A190836 ..1....2....2....2....3....2....3....1....1....1....1....1....2....3....1....3 %e A190836 ..2....1....1....3....1....3....2....3....3....2....2....3....3....2....2....2 %e A190836 ..3....3....3....2....3....2....3....1....1....3....1....2....2....3....3....1 %e A190836 ..1....1....1....3....2....1....2....3....2....2....2....3....1....2....1....2 %e A190836 ..2....2....3....1....1....2....1....1....1....3....3....2....2....3....3....1 %e A190836 ..3....3....1....2....2....1....3....2....2....1....1....3....1....2....2....3 %Y A190836 Row n=7 of A322013. %K A190836 nonn %O A190836 0,4 %A A190836 _R. H. Hardin_, May 21 2011 %E A190836 a(0)=1 prepended by _Seiichi Manyama_, Nov 16 2018