cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190836 Number of permutations of 7 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

This page as a plain text file.
%I A190836 #19 Nov 10 2024 21:46:50
%S A190836 1,0,1,56620,22875971289,36533294879349056,183095824753841610373405,
%T A190836 2421032324142610480402567434373,
%U A190836 74115215422015289392187745053216373265,4749303210651587675797285013227098386984170468,588242979144354234332728292738493758656488275002948671
%N A190836 Number of permutations of 7 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
%H A190836 Seiichi Manyama, <a href="/A190836/b190836.txt">Table of n, a(n) for n = 0..88</a> (terms 1..11 from R. J. Mathar)
%F A190836 a(n) ~ sqrt(7) * 117649^n * n^(6*n) / (720^n * exp(6*n + 6)). - _Vaclav Kotesovec_, Nov 24 2018
%e A190836 Some solutions for n=3
%e A190836 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
%e A190836 ..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
%e A190836 ..3....1....3....3....3....3....1....3....3....1....1....1....3....1....3....1
%e A190836 ..1....3....1....1....2....2....3....2....2....2....3....2....1....3....2....3
%e A190836 ..2....1....2....2....3....3....2....3....1....3....2....1....3....1....3....2
%e A190836 ..3....2....3....3....2....1....1....1....3....1....3....3....1....2....1....3
%e A190836 ..1....3....2....1....1....3....2....3....1....3....1....1....3....1....2....2
%e A190836 ..2....2....1....3....3....1....3....2....2....2....3....2....1....3....3....3
%e A190836 ..3....3....2....1....1....2....1....1....3....3....2....3....3....1....2....1
%e A190836 ..1....2....3....3....2....1....3....2....2....1....3....1....2....2....1....3
%e A190836 ..3....1....1....2....3....3....2....3....3....2....1....2....1....3....3....1
%e A190836 ..2....3....2....3....1....1....1....2....2....3....3....1....2....1....1....3
%e A190836 ..3....2....3....1....3....3....3....1....3....1....2....3....3....3....2....2
%e A190836 ..1....3....2....2....2....2....2....3....1....2....3....2....2....1....1....1
%e A190836 ..2....1....3....1....1....3....1....2....3....3....2....3....3....2....3....2
%e A190836 ..1....2....2....2....3....2....3....1....1....1....1....1....2....3....1....3
%e A190836 ..2....1....1....3....1....3....2....3....3....2....2....3....3....2....2....2
%e A190836 ..3....3....3....2....3....2....3....1....1....3....1....2....2....3....3....1
%e A190836 ..1....1....1....3....2....1....2....3....2....2....2....3....1....2....1....2
%e A190836 ..2....2....3....1....1....2....1....1....1....3....3....2....2....3....3....1
%e A190836 ..3....3....1....2....2....1....3....2....2....1....1....3....1....2....2....3
%Y A190836 Row n=7 of A322013.
%K A190836 nonn
%O A190836 0,4
%A A190836 _R. H. Hardin_, May 21 2011
%E A190836 a(0)=1 prepended by _Seiichi Manyama_, Nov 16 2018