This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190837 #17 Nov 10 2024 21:46:54 %S A190837 1,0,1,400598,1530622143864,28920026907938624194, %T A190837 2070756746775910218326948065,459408385876250801291447710561829082, %U A190837 271259741131895052775392614041761701799270286,379065045836307787068046364731543393514652159389593652 %N A190837 Number of permutations of 8 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1. %H A190837 Seiichi Manyama, <a href="/A190837/b190837.txt">Table of n, a(n) for n = 0..78</a> %F A190837 a(n) ~ sqrt(8) * 131072^n * n^(7*n) / (315^n * exp(7*n + 7)). - _Vaclav Kotesovec_, Nov 24 2018 %e A190837 Some solutions for n=3 %e A190837 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1 %e A190837 ..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2 %e A190837 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1 %e A190837 ..2....2....2....3....2....3....2....2....3....2....2....2....3....2....2....2 %e A190837 ..3....3....3....1....3....1....1....1....1....1....1....3....1....3....3....3 %e A190837 ..2....1....1....3....1....2....2....3....2....3....3....1....3....1....2....1 %e A190837 ..3....3....2....1....2....1....3....2....3....1....1....3....1....3....3....2 %e A190837 ..1....2....3....2....1....2....1....1....2....3....3....2....2....2....2....3 %e A190837 ..3....1....1....1....3....1....2....3....3....2....1....1....3....3....3....2 %e A190837 ..1....3....2....2....2....2....1....2....1....1....2....3....1....1....2....3 %e A190837 ..2....1....1....1....3....3....3....1....3....3....1....2....3....3....3....1 %e A190837 ..1....3....3....3....1....1....1....2....1....2....2....3....2....2....1....3 %e A190837 ..2....2....1....2....3....3....2....3....3....3....3....2....3....3....2....2 %e A190837 ..3....3....3....3....1....1....3....1....2....2....2....3....2....2....1....3 %e A190837 ..1....1....2....2....3....3....2....3....1....3....3....1....1....3....2....1 %e A190837 ..3....3....3....3....2....2....3....2....3....2....1....3....3....1....3....3 %e A190837 ..2....2....1....1....3....3....1....3....2....1....2....1....2....3....1....2 %e A190837 ..1....3....3....3....2....2....3....2....3....3....3....2....1....2....3....1 %e A190837 ..3....2....2....2....3....1....1....1....2....2....2....1....2....3....1....2 %e A190837 ..2....1....3....3....1....3....3....3....3....3....3....3....3....1....3....3 %e A190837 ..3....2....1....2....2....2....2....1....2....1....1....1....2....2....1....1 %e A190837 ..1....3....2....3....1....3....3....3....1....3....3....2....1....1....3....3 %e A190837 ..2....2....3....1....3....2....2....2....2....2....2....3....3....2....2....2 %e A190837 ..3....1....2....2....2....3....3....3....1....1....3....2....2....1....1....1 %Y A190837 Row n=8 of A322013. %K A190837 nonn %O A190837 0,4 %A A190837 _R. H. Hardin_, May 21 2011 %E A190837 a(0)=1 prepended and a(7)-a(9) added by _Seiichi Manyama_, Nov 16 2018