cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190882 Numbers other than prime powers divisible by the sum of the squares of their prime divisors.

This page as a plain text file.
%I A190882 #26 Oct 20 2024 02:32:50
%S A190882 46206,72105,73346,92412,96096,97440,98098,99528,113883,117040,127680,
%T A190882 134805,138618,143520,146692,150024,165880,165886,184824,192192,
%U A190882 194880,196196,199056,216315,234080,255360,269192,276640,277236,287040,288288,292320,293384,294216,298584,300048,331760
%N A190882 Numbers other than prime powers divisible by the sum of the squares of their prime divisors.
%C A190882 The number of distinct prime divisors of n is >= 3, because if n = p^a * q^b where p and q are distinct primes, p^2+q^2 | n => p+q == 0 (mod p) or 0 (mod q), but p==0 (mod q), or q==0 (mod p) is impossible.
%C A190882 Koninck & Luca show that this sequence is infinite. - _Charles R Greathouse IV_, Sep 08 2012
%H A190882 Charles R Greathouse IV, <a href="/A190882/b190882.txt">Table of n, a(n) for n = 1..10000</a>
%H A190882 Jean-Marie de Koninck and Florian Luca, <a href="http://dx.doi.org/10.1016/j.jnt.2007.01.010">Integers divisible by sums of powers of their prime factors</a>, Journal of Number Theory, Volume 128, Issue 3, March 2008, Pages 557-563.
%e A190882 46206 is in the sequence because the prime distinct divisors of this number are {2, 3, 17, 151} and 2^2 + 3^2 + 17^2 + 151^2 = 23103, then 46206 = 23103*2.
%p A190882 with(numtheory):for n from 1 to 200000 do:x:=factorset(n):n1:=nops(x):s:=0:for
%p A190882   p from 1 to n1 do: s:=s+x[p]^2:od:if n1 >= 2 and irem(n,s)=0 then printf(`%d,`,n):else fi:od:
%t A190882 Select[Range[2,332000],!PrimePowerQ[#]&&Divisible[#,Total[Select[ Divisors[#],PrimeQ]^2]]&] (* _Harvey P. Dale_, May 24 2022 *)
%o A190882 (PARI) is(n)=my(f=factor(n)[,1]);#f>2&n%sum(i=1,#f,f[i]^2)==0 \\ _Charles R Greathouse IV_, May 23 2011
%o A190882 (PARI) is(n)=n>9 && !isprimepower(n) && n%norml2(factor(n)[,1])==0 \\ _Charles R Greathouse IV_, Feb 03 2016
%Y A190882 Cf. A066031.
%K A190882 nonn
%O A190882 1,1
%A A190882 _Michel Lagneau_, May 23 2011