This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190893 #11 Sep 09 2019 12:49:35 %S A190893 2,1,0,2,1,0,0,2,1,0,2,1,1,0,2,1,0,2,1,1,0,2,1,0,2,2,1,0,2,1,0,2,2,1, %T A190893 0,2,1,0,0,2,1,0,2,1,0,0,2,1,0,2,1,1,0,2,1,0,2,1,1,0,2,1,0,2,2,1,0,2, %U A190893 1,0,2,2,1,0,2,1,0,0,2,1,0,2,1,1,0,2,1,0,2,1,1,0,2,1,0,2,2,1,0,2,1,0,2,2,1,0,2,1,0,0,2,1,0,2,1,0,0,2,1,0,2,1,1,0,2,1,0,2,1,1,0,2 %N A190893 a(n) = [3en] - 3[en], where [ ] = floor. %C A190893 Suppose, in general, that a(n) = [(bn+c)r] - b[nr] - [cr]. If r > 0 and b and c are integers satisfying b >= 2 and 0 <= c <= b-1, then 0 <= a(n) <= b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 (or b) position sequences comprise a partition of the positive integers. %t A190893 f[n_] := Floor[3 n*E] - 3*Floor[n*E]; %t A190893 t = Table[f[n], {n, 1, 220}] (* A190893 *) %t A190893 Flatten[Position[t, 0]] (* A191103 *) %t A190893 Flatten[Position[t, 1]] (* A191104 *) %t A190893 Flatten[Position[t, 1]] (* A191105 *) %t A190893 f[n_]:=Module[{c=E*n},Floor[3*c]-3*Floor[c]]; Array[f,150] (* _Harvey P. Dale_, Feb 08 2013 *) %Y A190893 Cf. A191103, A191104, A191105 (3-way partition of N, from this sequence). %K A190893 nonn %O A190893 1,1 %A A190893 _Clark Kimberling_, May 26 2011