This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190909 #12 Jul 23 2017 03:53:33 %S A190909 1,1,1,1,3,2,1,6,10,6,1,10,30,42,6,1,15,70,168,54,30,1,21,140,504,270, %T A190909 330,20,1,28,252,1260,990,1980,260,140,1,36,420,2772,2970,8580,1820, %U A190909 2100,70,1,45,660,5544,7722,30030,9100,16800,1190,630 %N A190909 Triangle read by rows: T(n,k) = binomial(n+k,n-k) * k! / floor(k/2)!^2. %C A190909 The triangle may be regarded as a generalization of the triangle A063007. %C A190909 A063007(n,k) = binomial(n+k, n-k)*(2*k)$; %C A190909 T(n,k) = binomial(n+k, n-k)*(k)$. %C A190909 Here n$ denotes the swinging factorial A056040(n). As A063007 is a decomposition of the central Delannoy numbers A001850, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected. %C A190909 T(n,n) = A056040(n) which can be seen as extended central binomial numbers. %H A190909 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers</a> %H A190909 R. A. Sulanke, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Sulanke/delannoy.html">Objects counted by the central Delannoy numbers</a>, J. Integer Seq. 6 (2003), no. 1, Article 03.1.5. %F A190909 T(n,1) = A000217(n). T(n,2) = 2*binomial(n+2,4) (Cf. A034827). %e A190909 [0] 1 %e A190909 [1] 1, 1 %e A190909 [2] 1, 3, 2 %e A190909 [3] 1, 6, 10, 6 %e A190909 [4] 1, 10, 30, 42, 6 %e A190909 [5] 1, 15, 70, 168, 54, 30 %e A190909 [6] 1, 21, 140, 504, 270, 330, 20 %e A190909 [7] 1, 28, 252, 1260, 990, 1980, 260, 140 %p A190909 A190909 := (n,k) -> binomial(n+k,n-k)*k!/iquo(k,2)!^2: %p A190909 seq(print(seq(A190909(n,k),k=0..n)),n=0..7); %t A190909 Flatten[Table[Binomial[n+k,n-k] k!/(Floor[k/2]!)^2,{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Mar 25 2012 *) %Y A190909 Cf. Row sums: A190910; A056040, A063007, A085478, A088617. %K A190909 nonn,tabl %O A190909 0,5 %A A190909 _Peter Luschny_, May 24 2011