This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190923 #19 Nov 10 2024 21:46:43 %S A190923 1,3655,22831355,182502973885,1681287695542855,16985819072511102549, %T A190923 183095824753841610373405,2070756746775910218326948065, %U A190923 24302858067615766089801166488125,293736218147318801678882792470437721 %N A190923 Number of permutations of n copies of 1..6 introduced in order 1..6 with no element equal to another within a distance of 1. %H A190923 Seiichi Manyama, <a href="/A190923/b190923.txt">Table of n, a(n) for n = 1..240</a> (terms 1..35 from R. H. Hardin) %F A190923 a(n) ~ 9 * 5^(6*n-2) / (128 * sqrt(2) * Pi^(5/2) * n^(5/2)). - _Vaclav Kotesovec_, Nov 24 2018 %e A190923 Some solutions for n=2 %e A190923 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1 %e A190923 ..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2 %e A190923 ..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3 %e A190923 ..4....2....4....4....4....2....4....4....4....4....4....4....4....4....4....4 %e A190923 ..5....4....5....5....5....4....1....5....5....2....5....1....5....5....1....3 %e A190923 ..1....5....4....3....3....1....3....4....2....5....6....4....6....6....5....4 %e A190923 ..4....6....2....2....6....4....5....5....4....6....1....5....3....2....2....2 %e A190923 ..5....3....1....6....5....5....6....1....5....5....5....6....2....6....6....5 %e A190923 ..2....5....6....5....6....3....5....6....3....3....3....2....6....3....3....1 %e A190923 ..6....6....5....6....2....6....4....3....6....4....6....5....4....1....6....6 %e A190923 ..3....1....6....1....1....5....2....6....1....1....2....6....5....4....5....5 %e A190923 ..6....4....3....4....4....6....6....2....6....6....4....3....1....5....4....6 %Y A190923 Column k=6 of A322013. %Y A190923 Cf. A000012 (b=2), A190917 (b=3), A190918 (b=4), A190920 (b=5), A190927 (b=7), A190932 (b=8), A321987 (b=9). %K A190923 nonn %O A190923 1,2 %A A190923 _R. H. Hardin_, May 23 2011