cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190927 Number of permutations of n copies of 1..7 introduced in order 1..7 with no element equal to another within a distance of 1.

This page as a plain text file.
%I A190927 #24 Nov 10 2024 21:46:35
%S A190927 1,47844,4420321081,551248360550999,81644850343968535401,
%T A190927 13519747358522016160671387,2421032324142610480402567434373,
%U A190927 459408385876250801291447710561829082,91155245844064069307740171414201519055298
%N A190927 Number of permutations of n copies of 1..7 introduced in order 1..7 with no element equal to another within a distance of 1.
%H A190927 Seiichi Manyama, <a href="/A190927/b190927.txt">Table of n, a(n) for n = 1..185</a> (terms 1..25 from R. H. Hardin)
%F A190927 a(n) ~ 343 * sqrt(7) * 2^(7*n-8) * 3^(7*n-3) / (625 * Pi^3 * n^3). - _Vaclav Kotesovec_, Nov 24 2018
%e A190927 Some solutions for n=2:
%e A190927   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
%e A190927   2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
%e A190927   3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3
%e A190927   4  4  4  4  4  2  2  4  4  4  2  4  4  4  4  2
%e A190927   5  5  5  1  5  4  4  2  5  5  4  2  1  3  2  1
%e A190927   6  6  6  5  6  5  3  5  3  6  5  4  4  5  5  4
%e A190927   2  7  4  6  7  6  5  6  6  3  6  5  5  6  6  5
%e A190927   7  3  5  4  2  3  6  5  7  7  7  1  6  4  4  6
%e A190927   5  4  2  2  1  5  7  6  2  6  3  6  7  5  7  7
%e A190927   6  5  6  3  6  4  5  1  4  1  7  3  2  7  1  3
%e A190927   4  6  1  5  7  7  7  3  7  7  5  7  5  2  7  4
%e A190927   3  2  7  7  5  1  1  7  1  5  1  6  7  1  5  6
%e A190927   7  7  3  6  4  6  6  4  5  4  6  5  6  7  6  7
%e A190927   1  1  7  7  3  7  4  7  6  2  4  7  3  6  3  5
%Y A190927 Column k=7 of A322013.
%Y A190927 Cf. A000012 (b=2), A190917 (b=3), A190918 (b=4), A190920 (b=5), A190923 (b=6), A190932 (b=8), A321987 (b=9).
%K A190927 nonn
%O A190927 1,2
%A A190927 _R. H. Hardin_, May 23 2011